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allows animals to acquire new information from others while 
reducing the need for individual exploration and exposure to 
risk (Olsson et al. 2020). In the past few decades, a mount-
ing number of studies have demonstrated social learning in 
a wide range of species beyond humans, from non-human 

Introduction

Social learning refers to the acquisition of a new behaviour 
resulting from the observation of another animal (Heyes 
1994; Zentall 2012; Carcea and Froemke 2019), which 
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Abstract
Previous studies suggest that social learning in bumblebees can occur through second-order conditioning, with conspecif-
ics functioning as first-order reinforcers. However, the behavioural mechanisms underlying bumblebees’ acquisition of 
socially learned associations remain largely unexplored. Investigating these mechanisms requires detailed quantification 
and analysis of the observation process. Here we designed a new 2D paradigm suitable for simple top-down high-speed 
video recording and analysed bumblebees’ observational learning process using a deep-learning-based pose-estimation 
framework. Two groups of bumblebees observed live conspecifics foraging from either blue or yellow flowers during a 
single foraging bout, and were subsequently tested for their socially learned colour preferences. Both groups successfully 
learned the colour indicated by the demonstrators and spent more time facing rewarding flowers—whether occupied by 
demonstrators or not—compared to non-rewarding flowers. While both groups showed a negative correlation between 
time spent facing non-rewarding flowers and learning outcomes, the observer bees in the blue group benefited from time 
spent facing occupied rewarding flowers, whereas the yellow group showed that time facing unoccupied rewarding flow-
ers by the observer bees positively correlated with their learning outcomes. These results suggest that socially influenced 
colour preferences are shaped by the interplay of different types of observations rather than merely by observing a con-
specific at a single colour. Together, these findings provide direct evidence of the dynamical viewing process of observer 
bees during social observation, opening up new opportunities for exploring the details of more complex social learning 
in bumblebees and other insects.

Keywords Insects · Observational learning · Pose-estimation · Second-order conditioning

Received: 20 July 2024 / Revised: 7 November 2024 / Accepted: 9 November 2024
© The Author(s) 2024

Bumblebee social learning outcomes correlate with their flower-facing 
behaviour

Yuyi Lu1,2,3,4 · Zhenwei Zhuo2,3 · Mark Roper5,6 · Lars Chittka7 · Cwyn Solvi3 · Fei Peng2,3,4 · Ying Zhou1,2,3,4

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10071-024-01918-x&domain=pdf&date_stamp=2024-11-25


Animal Cognition           (2024) 27:80 

primates to insects (Leadbeater and Chittka 2007; Lead-
beater and Dawson 2017; Carcea and Froemke 2019; Ols-
son et al. 2020).

Many experiments on social learning across species 
can be explained by domain-general learning mechanisms 
such as non-social, basic associative learning (Chittka and 
Leadbeater 2005; Olsson et al. 2020; Singh et al. 2021). 
Bumblebees have been extensively studied as insect models 
for such research, providing significant evidence to support 
this viewpoint (Olsson et al. 2020; Singh et al. 2021). In a 
typical bumblebee learning-by-observation paradigm (Wor-
den and Papaj 2005; Dawson et al. 2013; Avarguès-Weber 
and Chittka 2014), an observer bee is allowed to enter an 
enclosed transparent chamber where they can see their con-
specifics (live or artificial model demonstrator) foraging on 
coloured flowers. After a period of observation, the observer 
bee can develop a preference for demonstrator-occupied 
flowers over unoccupied flowers. Using this paradigm, it 
has been further demonstrated that bumblebees’ learned 
preferences directly reflect their previous experiences with 
demonstrating conspecifics and reinforcement (Dawson et 
al. 2013). That is, if a bee experienced finding and consum-
ing reward, i.e. sugar water, alongside conspecifics, they 
later approached flowers they had observed other bumble-
bees visiting. Conversely, if a bee encountered aversive con-
ditioning with conspecifics, e.g. bitter quinine solution, they 
subsequently avoid flowers they observe other bumblebees 
visiting. This implies the occurrence of second-order con-
ditioning, a fundamental associative learning mechanism, 
wherein demonstrators act as first-order reinforcers.

Previous studies have focused on the outcomes of obser-
vational learning in bumblebees, rather than the detailed 
behavioural processes involved. However, how bumblebees 
perform social observation remains largely unclear. Investi-
gating these detailed behavioural processes can offer addi-
tional support for the associative account of social learning. 
For example, live demonstrators may move and forage from 
specific flowers, one at a time, exposing observers to situ-
ations where demonstrators are physically separated from 
flowers, and thus requiring them to make generalisations to 
unoccupied but socially indicated flowers (Avarguès-Weber 
et al. 2015). Understanding such observational processes 
can shed light on the behavioural dynamics and mecha-
nisms at play.

Here we set out to examine bumblebees’ behaviour dur-
ing observational learning and asked whether their spatial 
positions and body orientations can account for individual 
learning outcomes. We first designed a new paradigm that 
constrained bees to move in a near 2D space, making it suit-
able for simple top-down high-speed video recording, as 
opposed to previous studies that typically allowed bees to 
move in 3D. We then employed a recently developed animal 

pose-estimation framework using deep neural networks 
(Mathis et al. 2018; Lauer et al. 2022) to extract the observer 
bees’ detailed positions and heading directions. Note that 
bumblebees, like all sighted insects, have compound eyes 
with large fields of view (Spaethe and Chittka 2003; Land 
and Chittka 2013; Taylor et al. 2019).

In bumblebees, this may be particularly relevant, as they 
have a limited frontal binocular zone, which spans only a 
small range of azimuth (Taylor et al. 2019), indicating that 
they need to orient towards stimuli to achieve effective 
depth perception and target detection. Indeed, hoverflies 
exhibit this orientation behaviour by stabilising their head 
or body direction to detect small, relevant objects in their 
environment (Land 1999). Similarly, bees tend to re-orient 
themselves to face behaviourally relevant stimuli directly, 
and their stimulus-specific brain activities have been shown 
to precede and predict these re-orientation behaviours 
(Paulk et al. 2014). Therefore, we assume that the heading 
directions of bumblebees serve as a good indicator of their 
binocular vision, which may be used to detect social cues 
and stimuli, similar to flower-facing behaviour observed in 
previous research (Frasnelli et al. 2021). With this assump-
tion, we set out to explore the specific cues the observer 
bees spent time viewing during observation and how these 
cues affected their learned colour preferences.

Methods

Animals and setup

Two bumblebee (Bombus terrestris) colonies from the Chi-
nese branch of Biobest (Biobest Biotechnology, Shouguang, 
China) were housed in wooden nest boxes (28 cm × 16 cm 
× 11 cm) and were fed daily with 20% (w/w) sucrose solu-
tion and pollen ad libitum in their nest boxes outside of 
experiments. An acrylic tunnel with sliding doors was used 
to connect the nest boxes and a foraging arena (Fig. 1A), 
permitting experimental control of individual bees’ access 
to the arena. Illumination was provided by two simulated 
daylight LED tubes (TruD65TM, 3nh, Shenzhen, China). 
Each individual bee was marked with a number tag (Opal-
ithplättchen, Warnholz & Bienenvoigt, Ellerau, Germany) 
attached to her thorax with superglue.

Bumblebee experiments were carried out within a cus-
tomised foraging arena (25.6 cm × 12.8 cm × 2.1 cm; 
Fig. 1A) that contained a transparent observational chamber 
(15.2 cm × 10 cm × 2.1 cm) and a feeding area (15.2 cm × 
2.8 cm × 2.1 cm), separated by a thin acrylic screen (15.5 cm 
× 2.1 cm × 2 mm). This transparent screen allowed the 
observers to only receive visual information from the feed-
ing area while blocking olfactory cues. A high-speed camera 
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(ILCE-9, Sony, Tokyo, Japan) was mounted above the UV-
transparent acrylic ceiling of the arena. The limited height 
of this arena (2.1 cm; Fig. 1A) was chosen to simplify the 
behavioural tracking task: instead of full three-dimensional 
tracking with multiple cameras, bumblebees’ movements 
in this arena were approximately two-dimensional, and a 
top-down view camera sufficed in recording bumblebees’ 
detailed positions. Depending on the training and test-
ing phases, four grey or two yellow and two blue artificial 
flowers (2.4 cm × 1.9 cm × 0.8 cm; henceforth “flowers”) 
were fixed to the back wall of the arena, with a separation of 
1.6 cm in between each flower.

Experimental procedures

All bees were individually pre-trained to collect sucrose solu-
tion from grey-coloured artificial flowers (bees could extend 
their probosces through a small hole at the centre of each 
flower and collect the sucrose droplets provided). We ran-
domly selected demonstrator bees, with two assigned to the 
Blue group and two to the Yellow group. Each demonstrator 
was individually trained to find reward at one of two types of 
flowers (either yellow- or blue-coloured flowers containing 
10 µl 20% w/w sucrose solution as reward or 10 µl saturated 
quinine hemisulphate solution as punishment; Fig. 1B). In 

Fig. 1 The bumblebee observational learning 
setup and experimental procedures. (A) The 
experimental apparatus. The foraging arena 
was separated into an observational chamber 
and a feeding area where four artificial flowers 
were mounted to the back wall of the arena. (B) 
Demonstrator bees were individually pre-trained 
to forage on one type of flower (blue or yellow). 
(C) Demonstrator bees and naïve observer bees 
were paired to co-feed on grey flowers for three 
consecutive bouts. (D) In the observation phase, 
observer bees were then individually released 
into the observational chamber for the dura-
tion of one bout of demonstrator feeding. (E) 
The observer bees were then individually given 
access to non-rewarding flowers for 5 min to 
determine their socially-learned flower prefer-
ences. (F) Spectral reflectance of the two colours 
used in the experiments, and the loci of colours 
in the hexagonal bee colour space, determined 
by the bees’ UV, blue and green photoreceptors 
(Chittka 1992)
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Pose estimation and statistical analyses

To estimate the poses of the observer bees from the high-
speed (100 fps) video footage taken during the observation 
phase, DeepLabCut (Mathis et al. 2018; Nath et al. 2019; 
Lauer et al. 2022) toolbox and custom code in Python 
(version 3.8) were used to extract coordinates of both the 
observer and demonstrator bees’ head, thorax and abdomen. 
Instances where bees were standing, walking, or flying 
across the floor of the arena were included in the analy-
ses, whereas instances in which bees were hanging on the 
walls or ceiling were manually excluded (on average 15% 
of frames). After the manual inspection, estimated body part 
coordinates with a ‘likelihood’ (DeepLabCut output) of less 
than 0.99 were then further excluded. The likelihood values 
indicate the confidence of each body part’s position estimate, 
and frames with low likelihoods suggest uncertain or poorly 
predicted positions (Mathis et al. 2018; Nath et al. 2019; 
Lauer et al. 2022). Applying this 0.99 likelihood threshold 
led to the exclusion of less than 0.1% of additional frames, 
highlighting the high quality of the tracking data. We cal-
culated the locations of bees using DeepLabCut estimated 
body thorax positions, and their heading angles using both 
estimated thorax and head positions. We then calculated the 
observer bees’ body orientation and categorised instances 
where they faced specific flowers. This was done by draw-
ing a line from the bees’ positions along their body orienta-
tions to see if the line intersected with the location covered 
by specific flowers, which resulted in the following four 
different types of flower-facing behaviour: (1) a rewarding 
flower occupied by a demonstrator bee, (2) an unoccupied 
rewarding flower, (3) an occupied non-rewarding flower, 
where the observer occasionally saw a demonstrator in front 
of a non-rewarding flower due to passing or rare errors, and 
(4) an unoccupied non-rewarding flower.

Statistical analyses were performed in R (version 4.4.0) 
with glmmTMB (version 1.1.9) and emmeans (version 
1.10.1) packages. For each group, we compared the test 
results to chance level using generalised linear mixed mod-
els (GLMM), using a binomial distribution and a logit link 
function. The dependent variable was the proportion of 
choices (choosing one type of flower out of two types), with 
the number of choices included as a weight to account for 
the varying choice counts among bees, and bee and colony 
identities were included as potential random factors. The 
significance of factors were tested using likelihood ratio 
tests (LRTs). The overall performance of the unrewarded 
colour preference test among different groups was also com-
pared using binomial GLMM. The dependent variable was 
the proportion of choices for each bee, fitted with a binomial 
distribution and a logit link function, with the number of 
choices as a weight.The experimental group was included as 

each bout of foraging, a demonstrator bee could visit mul-
tiple flowers as the experimenter would refill a depleted 
flower from the back wall of the arena. The demonstrator 
training phase was completed when a bee made at least 100 
flower visits, at which point each demonstrator performed 
at nearly 100% correct choices. Note that during the social 
observation phase, across all 42 sessions (42 observers in 
total), the demonstrators made 100% correct choices in 
40 of those sessions. In the remaining two sessions, their 
choices were also accurate, achieving 11 out of 12 correct 
choices in one session and 12 out of 13 in the other (dem-
onstrators made on average of 11.333 ± 2.270 visits to the 
flowers). Naïve or observer bees were then individually 
paired with colour-trained demonstrators to co-feed on grey 
flowers (Fig. 1C) for three consecutive bouts, to ensure the 
observer had formed a first-order, positive (reward) associa-
tion with the demonstrator (Dawson et al. 2013).

Two counterbalanced groups of bees underwent the 
observational training procedure. The Yellow group con-
sisted of observer bees (N = 20) that were given the oppor-
tunity to observe demonstrators foraging on yellow flowers, 
and the Blue group comprised observer bees (N = 22) that 
could observe demonstrators foraging on blue flowers. Dur-
ing the observation, a demonstrator bee was released into 
the feeding area to forage from flowers of one colour (yel-
low or blue), while an observer bee was allowed to view 
the floral array and demonstrator without direct contact 
with them (Fig. 1D). The observation period was terminated 
when the demonstrator bee completed one bout of forag-
ing and returned to the tunnel leading to the hive. Note that 
the one-demonstrator, one-bout observation procedure used 
here contrasts with the classical bumblebee social learning 
paradigm (Worden and Papaj 2005; Dawson et al. 2013; 
Avarguès-Weber and Chittka 2014), where observer bees 
were given a 10-min observation period to observe multiple 
live or model demonstrators. A naïve group of bees (Control 
group, N = 22) was also trained with the same pre-training 
procedure as the two experimental groups, but did not par-
ticipate in any social foraging or an observation phase prior 
to the test phase.

The two experimental groups and the control group 
were then tested individually with a colour preference test 
(Fig. 1E). Specifically, each bee in the experimental groups 
was let back into the tunnel after the observation phase to 
wait while the entire foraging arena was replaced with one 
that was clean, with a different flower spatial arrangement 
(randomised for different bees), and with each flower filled 
with 10 µl of water. The observer bee was then released 
back into the arena (Fig. 1E) and their floral choices within 
5 min were recorded. A floral choice was defined as any 
time a bee extended her proboscis and touched the feeding 
hole at the centre of a flower.
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in the subsequent unrewarded tests. The Control group 
revealed a clear innate bias for the colour blue (GLMM: 
N = 22, Z = − 6.009, P < 0.001; Fig. 2A). Similarly, both 
the Blue and Yellow groups also showed distinct prefer-
ences for blue, even after undergoing observational learning 
(GLMM for Blue group: N = 22, Z = − 8.404, P < 0.001; 
GLMM for Yellow group: N = 20, Z = − 4.715, P < 0.001; 
Fig. 2A). This aligns with findings from previous studies 
(Briscoe and Chittka 2001; Dawson et al. 2013; Avarguès-
Weber and Chittka 2014).

Despite the preference for blue flowers, we found a sig-
nificant difference in colour preference among the three 
groups (Likelihood-ratio test of the group effect: P < 0.001; 
Fig. 2A). Specifically, both the Blue and Yellow groups 
showed significantly different colour preference from the 
Control group, but in opposing directions (post-hoc pair-
wise comparison, Blue vs. Control: Z = − 3.077, P = 0.004; 
Yellow vs. Control: Z = 2.297, P = 0.022; Yellow vs. Blue: 
Z = 5.306, P < 0.001; Fig. 2A). Although the first choice 
during the test for each bee was not statistically significant 
(Fisher-Freeman-Halton test, P = 0.118, Fig. 2B), presum-
ably due to the relatively small sample size, the overall trend 
was consistent with the overall test performance (Fig. 2A). 
These results verified that in our new paradigm customised 
for motion tracking, bumblebees can learn colour pref-
erences through observation of conspecifics, despite the 
influence of innate colour preferences. Strikingly, the obser-
vation time in our setup was brief (ranging from 94 to 288 s; 
averaging 159 s), and involved only one live demonstrator, 
in contrast to previous studies that used 10-min observation 
periods and multiple live or model demonstrators (Chittka 
and Leadbeater 2005; Worden and Papaj 2005; Dawson et 
al. 2013; Avarguès-Weber and Chittka 2014). This suggests 
that our new paradigm is efficient in facilitating social learn-
ing in bumblebees.

Bumblebees show distinct positional and 
orientational patterns during observation

To explore where bumblebees positioned themselves 
and oriented during social observation, we estimated the 
observer bees’ head and thorax positions using DeepLabCut 
(Mathis et al. 2018; Nath et al. 2019; Lauer et al. 2022) and 
calculated their heading directions (Methods). From the dis-
tributions of the bees’ thorax positions during the observa-
tion, it is visually evident that observer bees from both Blue 
and Yellow groups predominantly spent their time in close 
proximity to the observation screen (Fig. 2C, D). More-
over, the distributions of bees’ heading directions (Fig. 2E, 
F) reveal a tendency for observer bees to orient themselves 
towards the flowers on the rear wall of the arena, indicating 
the possibility that binocular vision may play a role in social 

a fixed factor, while bee and colony identities were included 
as potential random factors. LRTs were performed on nested 
models to examine the overall group effects, followed by 
post-hoc pairwise comparisons.

The first choice made by each bee among different groups 
was then compared using Fisher–Freeman–Halton test. The 
time spent facing different flowers between the two experi-
mental groups was initially compared using nested GLMMs 
using LRTs. After summing the time spent facing occupied 
and unoccupied rewarding flowers, we compared the time 
difference between facing socially rewarding and non-
rewarding flowers using a GLMM, assuming a Gaussian dis-
tribution. In addition, we evaluated the potential contribution 
of different types of observations to the learning outcomes. 
Specifically, the overall test performance was included as 
the dependent variable assuming a binomial distribution. 
The time spent by observer bees facing occupied reward-
ing flowers (when the demonstrator bee was feeding on the 
rewarding flower), unoccupied rewarding flowers (when the 
demonstrator was absent), ‘occupied’ non-rewarding flow-
ers and ‘unoccupied’ non-rewarding flowers were included 
as potential fixed factors, with the colony and bee identity 
included as potential random factors, and the signficancy of 
different factors were examined using LRTs. The Blue and 
Yellow group were modelled separately to account for the 
potential innate colour preferences.

Ethical note

Although there are no current legal requirements regarding 
insect care and use in research in any country, experimental 
design and procedures were guided by the 3Rs principles 
(Russell and Burch 1959; Fischer et al. 2023). The behav-
ioural tests were non-invasive, and the types of manipula-
tions used are similar to those experienced by bumblebees 
during their natural foraging life. The bumblebees were 
cared for on a daily basis by trained and competent staff, 
which included routine monitoring of welfare and provi-
sion of correct and adequate food during the experimental 
period.

Results

Bumblebees rapidly learn through observation in a 
simplified apparatus

To verify whether bumblebees can learn colour preferences 
after a one-demonstrator, one-bout observation (Methods) 
within a customised apparatus for simplified motion-track-
ing (arena with restricted hight and a transparent observa-
tion chamber; Fig. 1A), we examined the bees’ choices 
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Bumblebees’ spend more time facing rewarding 
flowers than non-rewarding flowers

Based on the bees’ heading direction, the observation time 
was divided into periods spent facing (their body oriented 
towards) rewarding flowers occupied by a demonstrator, 
rewarding flowers without a demonstrator, non-rewarding 

observation. However, the fact that bees tended to spend 
more time near and orient towards the feeding area did not 
provide specific information about what they were viewing 
during the observation stage. We therefore analysed their 
heading direction in more detail.

Fig. 2 Observational learning outcomes and the 
positional and directional patterns of observer 
bees. (A) Preference for yellow flowers in the 
unrewarded test for the Blue group, Yellow 
group, and Control group. (B) First choices 
made in the unrewarded test across different 
groups. C. D. After estimating head and thorax 
positions for each frame during the observation 
phase, the distributions of the observer bees’ 
positional changes relative to the observational 
screen adjacent to the feeding area were visual-
ised separately for the Blue and Yellow groups. 
E. F. Using the estimated head and thorax 
positions for each frame during the observa-
tion phase, the heading direction per frame was 
calculated, and the distributions of the observ-
ers’ heading direction changes were visualised 
separately for the Blue and Yellow groups. 
***P < 0.001, **P < 0.01, *P < 0.05, N.S.: not 
significant
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flowers—whether occupied by a demonstrator or not—
compared to non-rewarding flowers (GLMM for the Blue 
group: N = 22, Z = 2.124, P = 0.034; GLMM for the Yellow 
group: N = 20, Z = 2.559, P = 0.011; Fig. 3C). This confirms 

flowers with a demonstrator and non-rewarding flowers 
without a demonstrator (Methods; Fig. 3A). While there 
was no clear difference in the time spent on each category 
between Blue and Yellow groups (LRT: P = 0.241; Fig. 3B), 
both groups spent significantly more time facing rewarding 

Fig. 3 Observer bees’ time spent facing different cues. (A) Schematic 
diagram illustrating different flower-facing behaviours based on calcu-
lated heading directions and estimated positions of the observer bees. 
(B) Time spent by observer bees facing different flowers for the Yel-

low and Blue groups. (C) The relative difference in time spent facing 
rewarding (both occupied and unoccupied) and facing non-rewarding 
(occupied and unoccupied) flowers, visualised using box plots. N.S.: 
not significant
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non-rewarding flowers, the probability of choosing the blue 
flowers decreased by approximately 0.85%.

In contrast, in the Yellow group, the time spent facing 
unoccupied rewarding flowers positively contributed to the 
test performance (GLMM, N = 20, Z = 3.432, P < 0.001; 
Fig. 4B), while the time spent facing non-rewarding flow-
ers had a negative effect (GLMM, N = 20, Z = − 2.038, 
P = 0.042; Fig. 4C). Specifically, for each additional second 
spent facing unoccupied rewarding (yellow) flowers, the 
probability of choosing the yellow flowers during the test 
increased by approximately 1.61%. Conversely, for each 
additional second spent facing non-rewarding flowers, the 
probability of choosing the yellow flowers decreased by 
approximately 0.37%.

Could the tendency to face unoccupied rewarding flow-
ers simply be a continuation of facing occupied rewarding 
flowers after the demonstrators had left? To explore this, we 
examined the frames immediately preceding unoccupied 

that observing a successful forager indeed creates a strong 
bias in the colour preference of an observer bee.

Correlations between flower-facing behaviours and 
learned colour preferences

A closer examination of the correlations between differ-
ent flower-facing behaviours and the bees’ learned colour 
preferences revealed distinct patterns. In the Blue group, 
the time spent facing occupied rewarding flowers positively 
(GLMM, N = 22, Z = 3.069, P = 0.002; Fig. 4A), and fac-
ing non-rewarding flowers negatively (GLMM, N = 22, Z 
= − 2.672, P = 0.008; Fig. 4B) contributed to the learned 
colour preference. For each additional second spent fac-
ing occupied rewarding (blue) flowers, the probability 
of choosing the blue flowers increased by approximately 
1.50%. Conversely, for each additional second spent facing 

Fig. 4 Flower-facing behaviours correlate with socially-learned colour 
preferences in bumblebees. A–B. The relationship between occupied 
rewarding flower-facing time, unoccupied non-rewarding flower-
facing time and the test performance in the Blue group, respectively. 

C–D. The relationship between unoccupied rewarding, unoccupied 
non-rewarding flower-facing time and the test performance in the Yel-
low group, respectively
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Bumblebees’ capacity to gain information by observing 
other foragers and subsequently altering their floral prefer-
ences has been repeatedly demonstrated (Leadbeater and 
Chittka 2005; Worden and Papaj 2005; Dawson et al. 2013; 
Avarguès-Weber and Chittka 2014; Leadbeater and Dawson 
2017), leading to the assumption that since observers are 
exposed to mobile demonstrators who are physically disas-
sociated from rewarding flowers, the observers must gener-
alise to the unoccupied rewarding flowers to learn the floral 
preferences (Avarguès-Weber et al. 2015). However, previ-
ous studies have not yet directly demonstrated how this gen-
eralisation effect develops. By quantifying the observation 
process, we provide empirical support showing how bees 
generalise to the unoccupied flowers and that the degree of 
generalisation correlates with their learning outcomes. It is 
important to note, however, that bumblebees’ innate pref-
erences for blue over yellow colours (Briscoe and Chittka 
2001; Dawson et al. 2013; Avarguès-Weber and Chittka 
2014) may have obscured the impact of observation and 
generalisation, as results from the Blue and Yellow groups 
did not show the same effects. Future studies using stimuli 
that do not induce such innate biases could help clarify these 
differences.

The fact that observers can rapidly learn to change their 
floral choices, only spending a fraction (average 38 s) of the 
average 2.65 min observation period facing flowers, may 
have significant ecological implications. Bumblebees often 
forage in dense flower meadows, where dozens of flowers 
are likely to come into view every second (Chittka et al. 
1999; Couvillon et al. 2015), providing little time for bum-
blebee observers to pick up pertinent social information, 
especially since they normally must observe while in flight 
themselves. Therefore, their lifestyle demands rapid transfer 
of values between social information and flowers.

While recent advances in computer vision and deep 
learning have facilitated the analysis of multi-animal social 
learning tasks through precise, marker-less pose estima-
tion frameworks (Lauer et al. 2022; Pereira et al. 2022), the 
application of deep-learning-based behavioural analysis to 
insect observational learning has just begun. Such analy-
sis could extend beyond the simple stimulus enhancement 
demonstrated in this study, to more complex behaviours 
involving sequential motor actions. For example, bumble-
bees have been shown to rapidly learn through observation 
tasks that require string-pulling (Alem et al. 2016) and ball-
rolling (Loukola et al. 2017). Examining the observational 
processes leading to these socially-learned complex motor 
skills could provide insights into the mechanisms by which 
the miniature brains of bumblebees generate top-down 
expectations and activate imitative motor patterns (Wilson 
and Knoblich 2005).

rewarding flower-facing behaviour. Interestingly, bees 
faced non-rewarding flowers more frequently than occu-
pied rewarding flowers prior to facing unoccupied flowers 
(GLMM for the Blue group: N = 22, Z = 1.999, P = 0.046; 
GLMM for the Yellow group: N = 20, Z = 2.878, P = 0.004). 
These results suggest that socially-learned preferences may 
be driven by more than just instances of facing a demon-
strator on a flower. Instead, they depend on the interplay 
between time spent facing different cues, such as the degree 
of generalisation to rewarding but unoccupied flowers (Ava-
rguès-Weber et al. 2015).

Discussion

Social learning has been proposed to be explained by domain-
general processes, such as associative learning (Chittka and 
Leadbeater 2005; Heyes 2012; Heyes and Pearce 2015). A 
recent theoretical study further proposed that social learning 
outcomes correlate with the number of observation oppor-
tunities, indicating that increased exposure to social stimuli 
may result in a higher likelihood of response to these stimuli 
(Lind et al. 2019). Here we provide empirical behavioural 
evidence corroborating these theoretical propositions, sug-
gesting that the outcomes of social learning in bumblebees 
may be a function of the frequency of observation inci-
dences: increased observation of socially rewarding stim-
uli or decreased observation of non-rewarding stimuli can 
enhance the likelihood of bumblebees copying demonstra-
tor’s colour choices. Our novel 2D social learning paradigm 
suitable for simple top-down motion tracking allowed us to 
verify that bumblebees can learn through observation, even 
with much shorter time period and fewer demonstrators, 
compared to previously used paradigms. Our findings begin 
to dissect the individual behaviours during observation that 
facilitate or hinder social learning.

It is not surprising that bumblebees spent most of their 
time nearer the flower array and most of the observation 
phase with their bodies oriented in the general direction of 
the flower patch. It was, however, not necessarily expected 
that bees’ body alignment with specific flowers would cor-
relate with their socially-learned preferences. In our setup, 
bumblebees likely relied on their frontal binocular zone to 
observe live demonstrators moving and feeding among the 
flowers—a process that could involve depth perception, 
object recognition, and stimulus comparison, all of which 
may require binocular vision. However, whether bees can 
socially learn from cues located anywhere in their periph-
eral visual field has yet to be demonstrated experimentally. 
Future work will need to isolate information during social 
learning to determine the contribution of cues directly in 
front of a bumblebee’s body versus anywhere else.
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