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SUMMARY

Honeybees are models for studying how animals
with relatively small brains accomplish complex
cognition, displaying seemingly advanced (or ‘‘non-
elemental’’) learning phenomena involving multiple
conditioned stimuli. These include ‘‘peak shift’’
[1–4]—where animals not only respond to entrained
stimuli, but respond even more strongly to similar
ones that are farther away from non-rewarding
stimuli. Bees also display negative and positive
patterning discrimination [5], responding in opposite
ways to mixtures of two odors than to individual
odors. Since Pavlov, it has often been assumed
that such phenomena are more complex than simple
associate learning. We present a model of connec-
tions between olfactory sensory input and bees’
mushroom bodies [6], incorporating empirically
determined properties of mushroom body circuitry
(random connectivity [7], sparse coding [8], and syn-
aptic plasticity [9, 10]). We chose not to optimize the
model’s parameters to replicate specific behavioral
phenomena, because we were interested in the
emergent cognitive capacities that would pop out
of a network constructed solely based on empirical
neuroscientific information and plausible assump-
tions for unknown parameters. We demonstrate
that the circuitry mediating ‘‘simple’’ associative
learning can also replicate the various non-elemental
forms of learning mentioned above and can effec-
tively multi-task by replicating a range of different
learning feats. We found that PN-KC synaptic plas-
ticity is crucial in controlling the generalization-
discrimination trade-off—it facilitates peak shift and
hinders patterning discrimination—and that PN-to-
KC connection number can affect this trade-off.
These findings question the notion that forms of
learning that have been regarded as ‘‘higher order’’
are computationally more complex than ‘‘simple’’
associative learning.
224 Current Biology 27, 224–230, January 23, 2017 ª 2016 Elsevier L
RESULTS AND DISCUSSION

Based on structural and functional characteristics of the insect

olfactory pathway, we built a three-layer neuronal networkmodel

(Figure 1A) to test whether such simple circuits can reproduce

empirical behavioral results. The bee olfactory pathway (Fig-

ure S1) recruits a divergence-convergence structure where

�800–900 projection neurons (PNs) expand onto�170,000 Ken-

yon cells (KCs), and these are then read out by �400 mushroom

body extrinsic neurons (ENs). The connections between projec-

tion neurons and Kenyon cells are relatively sparse: each Kenyon

cell is thought to be innervated by approximately ten projection

neurons [8], and connections are random in Drosophila [7], a

property that we adopt here for bees. With a biologically realistic

PN-KC neuronal number ratio (1:40, �500 lateral antennal lobe

tract projection neurons [11] onto �20,000 clawed Kenyon cells

[8]), we generate a random connectivity matrix; each Kenyon cell

receives input from five to 15 projection neurons. This connectiv-

ity can transform olfactory inputs into sparse representations—

experimental estimates for Drosophila [12] indicate that �5%

of Kenyon cells are activated for any given stimulus. Moreover,

a putative GABAergic feedback inhibitory pathway onto mush-

room body calyces [13] may control the sparseness level of the

Kenyon cell population, as suggested for locusts [14] and

Drosophila [15]. We simulate feedback inhibition by selecting

5% of Kenyon cells that receive the largest summed inputs

and we label these Kenyon cells as activated for each stimulus

(Supplemental Experimental Procedures). To verify the effi-

ciency of this implementation, we compare the sets of activated

Kenyon cells so generated with the ones by a spiking network

with a global feedback inhibition, showing that the two are

almost identical (Figure S2A), indicating that this implementation

can adequately substitute a computationally more complex

spiking model. We apply a fixed level of feedback inhibition in

the model; it is, however, possible that this feedback pathway

is also subject to learning-related plasticity [16, 17].

The convergence between the putative reward pathway of the

VUMmx1 neuron [18] and the PN-KC synapses suggests the

possibility of learning-induced synaptic changes [9]. Mushroom

body extrinsic neurons encode stimulus valence [10, 19], and

KC-EN synapses display learning-related plasticity [20, 21].

Thus, we expand previous models that focus on KC-EN plastic

synapses [22–25] by implementing plasticity among PN-KC
td.
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Figure 1. The Simple Model of the Bee

Olfactory Pathway and Elemental Associa-

tive Learning

(A) The model has a three-layer feedforward ar-

chitecture, with feedback inhibition onto Kenyon

cells. PN-KC and KC-EN synapses both undergo

associative learning. Feedback inhibition controls

Kenyon cells populational sparseness to generate

5% activated Kenyon cells toward any given

stimulus. The two model extrinsic neurons, each

has an all-to-one connection from Kenyon cells,

are encoding appetitive (EN+) and aversive va-

lance (EN�), respectively. A preference is gener-

ated by a simple subtraction of the responses of

the two extrinsic neurons [19].

(B) Example projection neuron firing patterns as

artificial inputs to the model. The x axis shows the

projection neuron population space, i.e., all of the

projection neurons, and the y axis gives the profile

for each projection neuron—a combination of bi-

nary activated projection neurons (intensity = 1)

and inactivated projection neurons (intensity = 0).

(C) The preference index is generated by simple

addition of the two extrinsic neuron responses with

opposite directions of valence. Overall a minus

sign is added to the preference index, such that,

for example, a decreased response to appetitive

stimuli now would have a positive preference—the

same direction toward behavioral bias (see also the

Supplemental Experimental Procedures). Before

training (pre-training 1, pre-training 2), the model’s

naive responses toward example patterns 1 and 2

are tested and shown as 0%. After differential

training with the two example patterns (post-

training 1, post-training 2), the model preference

toward both example pattern 1 (CS+) and example

pattern 2 (CS�) is significantly different from

baseline. Data for all four cases are represented as

mean responses over 100 network realizations (or

100 virtual bees) ± SD.

See also Figures S1 and S2.
and KC-EN synapses. We use a reward-based synaptic weight

modification rule, such that for PN-KC synapses, if a stimulus

is rewarded (CS+), the corresponding synapses between acti-

vated neurons will be strengthened; for a stimulus paired with

punishment (CS�), activated synapses are weakened (Supple-

mental Experimental Procedures). For KC-EN synapses, the

opposite is applied, as decreased extrinsic neuron response

for rewarded stimulus is consistently shown in bees [20], flies

[26], and locusts [21]; it is, however, worth noting that in bees,

the PE1 neuron could respond decreasingly [20], whereas non-

PE1 extrinsic neurons could respond increasingly [10], to CS+.

Aversive learning in Drosophila induces synaptic depression

[27], but among distinct KC-EN synapses other than the ones

used for appetitive valence encoding, suggesting a separation

of appetitive and aversive valence encoding among those

extrinsic neurons [19]. Moreover, the insect’s final behavioral de-

cision is proposed to come from a simple integration of those

different valence-encoding extrinsic neurons [19]. We thus intro-

duce two extrinsic neurons (EN+ and EN�), one for appetitive and
another for aversive value encoding. The simple learning rule for

PN-KC synapses is modified here, such that rewarded and pun-

ished stimuli will lead to synaptic depression among KC-EN+ and
KC-EN�, respectively. Following [19], a preference index is intro-

duced to measure the learned response of the model.

With equal weights initially assigned for PN-KC and KC-EN

synapses and a fixed Kenyon cell activation level, without

learning the model scores 0% in the preference index, as the

valence for positive and negative is balanced out. Plasticity will

then skew the model preference, and, assuming an inhibitory

link between extrinsic neurons and the motor response [20],

we view this change as a direct reflection of the final behavioral

response. In other words, rewarding stimuli induce decreased

extrinsic neuron responses, but finally higher preference, and

vice versa for punished stimuli.

Model Input and Output
Olfactory projection neuron activation patterns forming inputs to

themodel are generated based on two empirical characteristics.

First, honeybee olfactory inputs to antennal lobes are encoded

as combinatorial glomerular activation patterns [28]. Similarly,

olfactory projection neurons permeating the mushroom bodies

also show a combinatorial spatial-temporal response profile

[29]. Second, �50% of projection neurons are responsive to

each odor [30, 31]. In terms of encoding odor identity, Kenyon
Current Biology 27, 224–230, January 23, 2017 225
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Figure 2. Model Exhibits Peak Shift and Positive and Negative
Patterning

(A) Peak shift phenomenon generated by the model. Two groups, each con-

taining 100 network realizations (or 100 virtual bees; mean ± SD), have been
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cells might only use the spatial, rather than the temporal,

component of projection neuron activity since Kenyon cells

respond in a temporally sharpened manner [8]. It is thus plau-

sible to model projection neuron patterns simply as a binary

combinatorial code, and this simplification allows us to have

precise knowledge about the similarity between different inputs.

In reality, projection neuron firing patterns can be more specific

and selective, and thuswe recruit both binary andmore complex

projection neuron patterns for model testing. Following [32], we

model different inputs as partially overlapping projection neuron

binary activation patterns (Figure 1B). The resulting similarity be-

tween stimuli is therefore proportional to the number of shared

projection neurons that are activated by each stimulus; this is

in accordance with evidence that similarity of antennal lobe ac-

tivity patterns correlates with generalization in odor learning [33].

As a result of training, the model preference to CS+ and to

CS� is changed significantly (Figure 1C; paired-sample t test,

t99, CS+ = 95.4028, t99, CS� = �4.0262, p < 0.001).
Model Replicates Olfactory Peak Shift and Patterning
Tasks
Honeybees, like other animals [34], display peak shift in olfac-

tory learning on a similarity continuum by mixtures of two odor-

ants with different ratios [1, 3]. We assume the similarity in odors

is encoded as partially overlapping projection neuron activation

patterns. A set of artificial olfactory projection neuron patterns

that constitutes a similarity continuum was generated (Fig-

ure S2B). Trained with absolute and differential training proced-

ures (Supplemental Experimental Procedures) for CS+ with

reward and CS� with punishment (Figure 2B), the model is

tested with all of the stimuli patterns in the input continuum.

The model response closely resembles peak shift (Figure 2A) in

honeybees [1]: after differential training, the model responds

maximally to novel stimuli farther away from CS� than CS+,

while after absolute training the peak response occurs at CS+
recorded. The magenta line represents the preference index of the absolute

training group with stimulus 51 (CS+), and the pink line represents the pref-

erence index of differential training group on stimuli 51 (CS+) and 65 (CS�).

The response curve (shown as mean ± SD) peaked after differential training

with a novel position that is slightly farther away from CS� than CS+, similar to

the curve in [1]. The gray area points out the so-called area shift [1].

(B) Two input patterns, CS+ (pattern 51) and CS� (pattern 65), were used in the

training and test.

(C) The model learns to solve both positive patterning and negative patterning

tasks (shown as mean of 100 network realizations ± SD). Top: model response

for artificial inputs A and B, where these inputs have a moderate level (40%) of

overlap. Middle: model response for artificial input A and B, where input A and

B have no overlap (0%) at all. Bottom: model response for realistic projection

neuron inputs [41] with normalization. Each panel contains five blocks of

training, with each block containing four learning trials as follows: one expo-

sure to A, one to B, and two to the ABmixture in pseudo-random order. Yellow

lines and error bars indicate model preference toward the AB mixture, while

red and blue represent the preference toward A and B, respectively. Note that

red and blue curves are practically indistinguishable in several of the panels.

After five blocks of trials, the extrinsic neuron response for A/B is significantly

different from the AB mixture and from baseline in both positive and negative

patterning, in all six cases (paired-sample t test, p < 0.001). For training and

testing procedure of peak shift and patterning tasks, see the Supplemental

Experimental Procedures.

See also Figures S2 and S3.



(also see Figure S2C). There is also broadened generalization to-

ward the opposite side of CS�, the so-called area shift [1, 35].

Peak shift has been interpreted as a form of relationship learning

[4] or uncertainty coding [2], but a standard artificial neural

network model with back-propagation can reproduce this phe-

nomenon, indicating an emergent property of a simple network

[36]. We confirm this with a model based on neurobiological

evidence.

We then tested the model with positive and negative

patterning (equivalent to the exclusive-or/XOR problem [37]:

one or the other, but not both), following the same experimental

procedures as [5]. According to [38], the olfactory compound

input pattern to the honeybee antennal lobe is close to the arith-

metic sum of the independent input patterns by the two odors.

Moreover, odor mixture responses among projection neurons

show only a slight deviation from linearity [30, 39]. We here as-

sume the projection neuron activation pattern for an AB mixture

is a linear summation of A and B odor, such that the overlapping

projection neurons for an ABmixture respond additively and that

the task cannot be solved by classical conditioning, e.g., the Re-

scorla-Wagner rule [40]. Hence, the differentiation for input A or

B from its binarymixturewill be a reflection of themodel’s capac-

ity in solving this ‘‘non-elemental’’ problem. We employed two

sets of input patterns that had different similarity and a final set

of realistic projection neuron firing patterns [41], which were

used independently for training and testing of the patterning

discrimination (Supplemental Experimental Procedures). In

each block of training, a pseudo-random sequence of A, B

(once in each block), and the AB mixture (twice in each block)

was applied (Figure 2C). In all cases, the model reaches similar

levels of preferences for inputs A and B and successfully

discriminates A and B from their binary mixture (p < 0.001 in

paired-sample t test for A versus AB and B versus AB). Our

model exhibits positive and negative patterning discrimination,

which confirms previous theoretical work [23] and shows that it

can robustly deal with inputs that have various similarity levels,

as well as with realistic projection neuron firing patterns. Note

that the model was not optimized to replicate the above learning

phenomena. Instead, peak shift and patterning discrimination

emerge as the direct consequence of the model structure, which

was derived from known anatomy and physiology, and from

requiring parameters, e.g., learning rates, to be in a neurobiolog-

ically plausible range.

Having shown that the model can account for these behav-

iors, we investigated which particular features of the neuronal

circuitry could explain these phenomena. The insect mushroom

body circuitry resembles three-layer perceptron [37, 42] and

has been proposed to work similarly as the support vector

machine [43]. Thus, the transformation of dense codes among

projection neurons with linear mixture summation into a much

higher dimensional representation by the Kenyon cells is likely

to be the key for configural coding and non-linear problem solv-

ing. We here test whether different sparseness levels among

Kenyon cells for given stimuli affects the model’s ability to solve

patterning tasks. We show that a high sparseness level among

Kenyon cells is indeed necessary to separate overlapping

input, generating an inbuilt ability to solve the seemingly com-

plex ‘‘non-linear’’ patterning tasks through simple associative

learning (Figure S3). Interestingly, a recent study found that
the insect mushroom body GABAergic feedback pathway (the

putative source of inhibitory inputs to Kenyon cells [15]) is

crucial for solving so-called ‘‘non-elemental’’ forms of learning

[5]. It is thus possible that the necessity of GABAergic feedback

lies in modulating Kenyon cell population sparseness and so

affecting configural coding capacity.

Plasticity in PN-KC Synapses Affects Peak Shift and
Patterning Task in Opposite Directions
To explore how learning among PN-KC and KC-EN synapses

contributes to performance in peak shift and patterning discrim-

ination, we trained the model with different sets of learning rates

(Supplemental Experimental Procedures). Positive rate here re-

fers to the learning rate for CS+ and negative rate refers to

learning for CS�, for modifying the activated synapses. Begin-

ning with a fixed positive rate (0.006) for PN-KC and KC-EN syn-

apses and various negative rates, heatmaps for peak shift are

generated by detecting the proportion of groups (ten groups in

total, each trained with ten virtual bees) that have peak re-

sponses to novel stimuli that are farther away from CS� than

CS+ and are significantly higher (p < 0.05) than the responses

to CS+ (Figure 3A). Similarly, heatmaps for patterning are

made by detecting the proportion of groups (ten group in total,

each trained with ten virtual bees on inputs of various similarities)

that can significantly differentiate (p < 0.05) single odors from

their binary mixture. Thus, performance under each set of

learning rates is shown as a probability of successful behavioral

reproduction. We found that a large negative rate (relative to the

positive rate) among KC-EN synapses is critical to induce peak

shift, consistent with experimental findings [1]. Moreover, when

we fix the PN-KC synapses but implement plasticity in KC-EN,

the model can no longer reproduce peak shift (Figure 3B); in

contrast, for positive and negative patterning, almost all of

the sets can induce good patterning discrimination, but simula-

tions with plastic PN-KC synapses actually perform slightly

worse than with fixed PN-KC synapses. This suggests that plas-

ticity in PN-KC synapses facilitates peak shift but may hinder

patterning discrimination.

Effects of Classes of Kenyon Cells on Peak Shift and
Patterning Tasks
Honeybee mushroom bodies contain two classes of intrinsic

cells: class I, or spiny Kenyon cells with wide-field dendritic ar-

borizations, and class II, or clawed Kenyon cells with small-field

arborizations [44]. Above we havemodeled class II. Since class I

is less researched in bees, we substitute information from

locusts, where class I Kenyon cells [44, 45] may receive input

from �50% of the projection neuron population [46]. We build

a variety of models, each having only one specific number of

PN-to-KC connections, from 1% to 70% of all 100 projection

neurons. Using the Kenyon cell activation for pattern 51 (in

the middle of the input continuum) as the reference, we calcu-

late the Kenyon cell activation similarity between the reference

pattern and the entire input continuum (Figure S4A) for each

of the different models. Before learning, class I Kenyon cell

models (PN-to-KC = 45–55) show good specificity, in agree-

ment with previous suggestions [46] (Figure S4A, the ‘‘naı̈ve’’

case); absolute training on class I models leads to a broad

generalization to novel input patterns, and differential training
Current Biology 27, 224–230, January 23, 2017 227
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Figure 3. Model Performance on Peak Shift

and Patterning with a Different Set of

Learning Rates

(A) With plastic PN-KC synapses, three heat-

maps show the probability of the model in re-

producing peak shift and in significantly solving

positive and negative patterning under a different

set of learning rates, respectively. Note that the

positive learning rate for both PN-KC and KC-EN

synapses is fixed at 0.006, and the negative

learning rate for the two levels of synapses varies

from 0.001 to 0.012 with an increment of 0.001.

The probability for peak shift is calculated as

the frequency of groups of virtual bees (of ten

groups) that display significant peak shift as fol-

lows: peak responses to a novel response farther

away from CS� than CS+, and peak responses

that are significantly higher than the responses

to CS+ (paired-sample t test with a significance

level of 0.05). In positive and negative patterning,

each square indicates the frequency of groups of

virtual bees (of ten groups) that can significantly

(paired-sample t test with a significance level of

0.05) discriminate single odor patterns from the

binary mixture.

(B) The same as (A), but with fixed PN-KC syn-

apses, i.e., no learning among PN-KC is allowed.

(C) The probability of peak shift and patterning

reproduction in class I Kenyon cell model with

plastic PN-KC synapses, where each Kenyon cell

receives input from �50% of all projection neu-

rons (45–55 out of 100 projection neurons).

(D) The same as (C), but with fixed PN-KC syn-

apses.

See also Figure S4.
results inmoderate generalization (Figure S4A, ‘‘abs’’ and ‘‘dif’’).

In contrast, class II models (PN-to-KC = 5–15) show consistently

narrow generalization to novel patterns both before and after

learning. The area under the response similarity curve over

the input continuum for each model (Figure S4B) confirms

this, suggesting that class I Kenyon cells may facilitate general-

ization, while class II Kenyon cells may be more reliable for

discrimination.

We thus predict that a model with a connectivity scheme of

�50% projection neuron per Kenyon cell is likely to do well in

peak shift and not so well in patterning discrimination, as the

two tasks require generalization and fine discrimination capacity,

respectively. Indeed, the class I model perform similarly in peak

shift and clearly worse in patterning tasks (Figure 3C) than the

original class II model (Figure 3A). The comparison between

the class I model performance with and without PN-KC synaptic

plasticity (Figures 3C and 3D) also confirms that PN-KC plasticity

contributes to peak shift and patterning discrimination differ-

ently. We also test performance of models with different PN-

to-KC connection numbers for both peak shift and patterning

discrimination (Figure S4C), finding that with increasing PN-to-

KC connection numbers, the probability of peak shift increases

while the probability of both positive and negative patterning

decreases.
228 Current Biology 27, 224–230, January 23, 2017
PN-KC Plasticity and PN-to-KC Connection Number Can
Control the Generalization-Discrimination Trade-off
Sparse coding in mushroom body neurons in insects [8, 15]

reduces the overlap between stimulus representations and

thus may support the encoding of specific addressable memory

and discrimination [15]. However, it might have a disadvantage

for generalization [47], e.g., very sparse representation may

separate overlapping stimuli into non-overlapped configural

codes. Optimal discrimination will be feasible in this case, but

generalization is not possible, and vice versa, generating a

generalization-discrimination trade-off [47]. We hypothesized

that PN-KC plasticity and PN-to-KC connection number can

affect this trade-off. We thus compare the generalization and

discrimination capacity of class I model (PN-to-KC = 45–55)

and class II model (PN-to-KC = 5–15) with and without plastic

PN-KC synapses. For generalization, various pairs of two pat-

terns (both as CS+) of decreased similarity are used to train

the class I and class II models. The generalization score is the

difference between trained model responses to a novel pattern

(between the two training patterns) and to the two training pat-

terns (Figure 4A). Similarly, for discrimination (Figure 4A), models

are trained with various pairs of two patterns of decreasing sim-

ilarity—one as CS+ and another CS�. The discrimination score

is the response difference of trained model to CS+ and CS�.
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Figure 4. Kenyon Cell Classes and PN-KC

Plasticity in Generalization-Discrimination

A generalization score (mean of ten network

realizations ± SD) is given as summed differ-

ences—after being trainedon twopatterns (both as

CS+) with various levels of similarity—between

model learned preferences to a novel pattern that

lies in the middle (relative to their positions in the

input continuum) of the two training patterns and

the two patterns, normalized to [0, 1]. A high score

here indicates a good generalization capacity and

vice versa. A discrimination score (mean of ten

network realizations ± SD) is measured as the dif-

ference between learned preference of the model

to CS+ and CS�, with various pairs of two input

patterns that have different levels of similarity, also

normalized into the range [0, 1]. A high score in-

dicates a good discrimination capacity and vice

versa. Class I Kenyon cellmodel usedhere refers to

a model with PN-to-KC connection number of 45–

55, while class II model has a PN-to-KCconnection

number of 5–15. Both class I and class II models

with fixed PN-KC synapses show a lower general-

ization score and a higher discrimination score than

themodelswith plastic PN-KCsynapses, suggesting that KC sparse representationwith randomPN-KC connection is naturally efficient at fine discriminationwhile

limited at generalization. Plasticity in PN-KC (left, generalization: PN-KC plastic versus PN-KC fixed) can alter this and turn the model to more readily generalize.

Comparing the class I model with the class II model that implements learning, the former is better at generalization (left: PN-KC plastic class I versus PN-KC plastic

class II) but worse at discrimination (right: PN-KC plastic class I versus PN-KC plastic class II) than the latter. See also Figure S4.
Both class I and class II models with fixed PN-KC synapses

show lower generalization scores but higher discrimination

scores than models with plastic PN-KC synapses. This suggests

that with fixed PN-KC synapses, both models show naturally

optimal discrimination but limited generalization capacity.

Thus, the learning capacity in PN-KC synapses, or the microcir-

cuits inmushroombody calyces [48], might be able to control the

generalization-discrimination trade-off. The class I model shows

a better generalization score but poorer discrimination than the

class II model, suggesting that PN-to-KC connection number

might also contribute to this trade-off, with class I Kenyon cells

being better at generalization and class II Kenyon cells being bet-

ter at discrimination. Taken together, PN-KC plasticity and

different classes of Kenyon cells may serve as a compensation

in the natural inadequacy of Kenyon cell sparse coding in gener-

alization. Mixtures of different classes of Kenyon cells thus may

grant flexibility in adapting to generalization and discrimination

contexts; this needs further experimental study.
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Rössler, W. (2013). Parallel processing via a dual olfactory pathway in

the honeybee. J. Neurosci. 33, 2443–2456.

32. McLaren, I.P.L., and Mackintosh, N.J. (2002). Associative learning and

elemental representation: II. Generalization and discrimination. Anim.

Learn. Behav. 30, 177–200.

33. Guerrieri, F., Schubert, M., Sandoz, J.C., and Giurfa, M. (2005). Perceptual

and neural olfactory similarity in honeybees. PLoS Biol. 3, e60.

34. Ghirlanda, S., and Enquist, M. (2003). A century of generalization. Anim.

Behav. 66, 15–36.

35. Lynn, S.K. (2010). Decision-making and learning: the peak shift behavioral

response. In Encyclopedia of Animal Behavior, M.D. Breed, and J. Moore,

eds. (Elsevier), pp. 470–475.

36. Ghirlanda, S., and Enquist, M. (1998). Artificial neural networks as models

of stimulus control. Anim. Behav. 56, 1383–1389.

37. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning repre-

sentations by back-propagating errors. Nature 323, 533–536.

38. Deisig, N., Giurfa, M., Lachnit, H., and Sandoz, J.C. (2006). Neural repre-

sentation of olfactory mixtures in the honeybee antennal lobe. Eur. J.

Neurosci. 24, 1161–1174.

39. Deisig, N., Giurfa, M., and Sandoz, J.C. (2010). Antennal lobe processing

increases separability of odor mixture representations in the honeybee.

J. Neurophysiol. 103, 2185–2194.

40. Rescorla, R.A., and Wagner, A.R. (1972). A theory of Pavlovian condition-

ing: variations in the effectiveness of reinforcement and nonreinforcement.

In Classical Conditioning II: Current Research and Theory, A.H. Black, and

W.F. Prokasy, eds. (Appleton-Century-Crofts), pp. 64–99.

41. Luo, S.X., Axel, R., and Abbott, L.F. (2010). Generating sparse and selec-

tive third-order responses in the olfactory system of the fly. Proc. Natl.

Acad. Sci. USA 107, 10713–10718.

42. Schmuker, M., Pfeil, T., and Nawrot, M.P. (2014). A neuromorphic network

for generic multivariate data classification. Proc. Natl. Acad. Sci. USA 111,

2081–2086.

43. Huerta, R., Nowotny, T., Garcı́a-Sanchez, M., Abarbanel, H.D.I., and

Rabinovich, M.I. (2004). Learning classification in the olfactory system of

insects. Neural Comput. 16, 1601–1640.

44. Strausfeld, N.J. (2002). Organization of the honey bee mushroom body:

representation of the calyx within the vertical and gamma lobes. J. Comp.

Neurol. 450, 4–33.

45. Fahrbach, S.E. (2006). Structure of the mushroom bodies of the insect

brain. Annu. Rev. Entomol. 51, 209–232.

46. Jortner, R.A., Farivar, S.S., and Laurent, G. (2007). A simple connectiv-

ity scheme for sparse coding in an olfactory system. J. Neurosci. 27,

1659–1669.

47. Spanne, A., and Jörntell, H. (2015). Questioning the role of sparse coding

in the brain. Trends Neurosci. 38, 417–427.

48. Hourcade, B., Muenz, T.S., Sandoz, J.C., Rössler, W., and Devaud, J.M.
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Figure S1 related to Figure 1. Diagram of the honeybee olfactory circuit. Odorant molecules are first sensed by 
~60,000 olfactory receptor neurons (ORNs), which project to the antennal lobe (AL), the primary olfactory 
processing centre. Within the antennal lobe, the olfactory information is converged onto ~160 spherical structures 
called glomeruli (GL). The upper hemilobe of the antennal lobe is innervated by ~510 lateral antennal lobe tract (l-
ALT) projection neurons (PNs), and the lower hemilobe is innervated by ~410 medial antennal lobe tract (m-ALT) 
projection neurons [S1]. Carrying largely redundant information [S2], both tracts project to the mushroom body 
(MBs) and the lateral horn (LH), but in different order. Projection neurons in the lateral antennal lobe tract are 
considered to encode odour identity, while the medial antennal lobe tract is thought to encode the odour 
concentration [S3]. Here we focus on the lateral antennal lobe tract projection neurons. In bees, there are about 
20,000 clawed, or class II, Kenyon cells [S4], so the ratio between lateral antennal lobe tract projection neurons and 
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clawed Kenyon cells neuronal number is ~1:40. Kenyon cells synapse onto ~400 mushroom body extrinsic neurons 
(ENs). A subset of extrinsic neurons project back to Kenyon cell calyx (Kenyon cell input region), forming a 
putative inhibitory feedback pathway [S5]. Evidence from Drosophila [S6], locust [S7] and honeybee [S8] suggests 
that the KC-EN synapse is plastic, and appetitive learning might lead to synaptic depression among KC-EN 
synapses. In Drosophila, aversive learning also induces synaptic depression [S9], and appetitive and aversive 
valence are suggested to be encoded by distinct group of extrinsic neurons [S10]. One possibility is that the 
appetitive and aversive memories are stored in distinct KC-EN synapses. In a simplified version, we only show two 
extrinsic neurons here, with one for appetitive and another for aversive valence. Putative synapses for appetitive 
memory are shown in red, while the ones for aversive memory are shown in green. In addition, extrinsic neurons for 
appetitive and aversive valence have been shown to be simply additive in behavioural decision making [S10]. 
  



	

 
Figure S2 related to Figure 1 and Figure 2. Binary and spiking model comparison, artificial input continuum 
and peak shift. (A) For the upper panel, both artificially generated binary (100 different patterns in the input 
continuum, B), and more realistically modelled projection neuron firing patterns (110 different odour patterns in 
[S11]) are adopted (see also Supplemental Experimental Procedures). We apply each pattern to both the binary 
model and a standard spiking network model using Izhikevich neurons [S12, S13] and a global feedback inhibition 
neuron. Same PN-KC connectivity matrix is applied to both models, allowing a direct comparison of the input 
driven Kenyon cell activation. We show that in terms of activated Kenyon cells, binary model and spiking model 
generate highly similar results (close to 100%), indicating that the binary model is sufficient in substituting a spiking 
model for sparse Kenyon cell representation. In other words, the cut-off method (Supplemental Experimental 
Procedures) for Kenyon cell sparseness has a similar effect to a global feedback inhibition, without requiring any 
additional assumptions. For the lower panel, the spiking network model Kenyon cell sparseness toward artificial 
stimuli is shown to vary moderately (4-6%), while vary hugely (0-10%) toward realistic stimuli. Note that the 
comparison of each case is done by matching the actual sparseness level of Kenyon cells from the spiking model, 
with the binary model, as the latter one allows a precise control of the sparseness. It thus also demonstrates that for 
theoretical exploration, the binary model might be better since it would be difficult for the spiking model to maintain 
a certain level of sparseness among Kenyon cells, irrespective of the input characteristics. (B) A set of projection 
neuron input patterns that have systematically different levels of similarity is generated. As described in Figure 1B, 
each stimulus is modelled as a combination of activated projection neurons (50%, firing intensity =1) and 
inactivated projection neurons (50%, firing intensity =0). Here we show five different inputs that slightly differ from 
each other. The total number of artificial patterns are 100, with the smallest similarity among two patterns being 2% 
(see Supplemental Experimental Procedures for similarity measurement). (C) Using projection neuron patterns of 
various amplitudes other than the binary activation patterns, we show that the model also manifests peak shift 
phenomenon (mean of 100 network realisations ± standard deviation), consistent with Figure 2A. The projection 
neuron responses shown here (CS+ and CS-) are generated from a Gaussian probability density function.  
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Figure S3 related to Figure 2. The effect of Kenyon Cell population sparseness on patterning discriminations. 
(A) By exhaustively varying the sparseness level from 0.5% to 50% and comparing the joint Kenyon cell 
representation of odours A & B, denoted as A+B, with the Kenyon cell representation of AB mixture and others, 
less sparse (or denser) Kenyon cell representation leads to a higher similarity between A+B and AB mixture, and 
between single odours and AB mixture, indicating a deterioration of configural code generation. (B) Along with the 
decrease of Kenyon cell sparseness level (or increase of Kenyon cell activation), the model’s relative preference is 
measured by the difference of trained model response to A and AB, to B and AB respectively. This shows a similar 
trend of that shown in (A), i.e., decrease of Kenyon cell sparseness leads to naturally smaller difference between 
single odours and the binary mixture. Overall this suggests the necessity of sufficiently sparse Kenyon cell 
representation in mediating the configural coding capacity (mean of 100 network realisations ± standard deviation).  
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Figure S4 related to Figure 3 and Figure 4. Performance of models with different PN-to-KC connection 
numbers. (A) The three graphs are generated by taking the Kenyon cell activation pattern for the central pattern as 
the reference, and compare the model Kenyon cell activation similarity for each pattern in the input continuum with 
it. Different models are generated by allocating Kenyon cells with different projection neuron numbers. Before 
training (naïve case), the models have a rather narrow band of generalisation, which actually decreases further 
slightly along with the increase of PN-to-KC connection numbers. After absolute training on the central pattern, the 
generalisation curve from models with larger PN-to-KC connection numbers is much broader than the models that 
only have a few projection neuron connections per Kenyon cell. The trend is similar in differential training group, 
but in that case, generalisation is not as broad as after absolute training. This is even more visible in (B), where the 
area under each generalisation curve has been plotted and all the graphs in (A) have been included (mean of 100 
network realisations for each PN-to-KC connection number ± standard deviation). This suggests that models with a 
large number of PN-to-KC connections (e.g., class I model with PN-to-KC = 45-55) may facilitate broad 
generalisation while a few PN-KC connections (e.g., class II model with PN-to-KC = 5-15) may actually be reliable 
in discrimination. (C) Model performance (probability of behavioural reproduction over 10 groups of 10 network 
realisations for each model, and shown as mean of 5 repetitions ± standard deviation) on peak shift and patterning 
discrimination is shown as a probability of behaviour reproduction, similarly as shown in Figure 3. With increased 
PN-to-KC connection number, the probability for peak shift is tend to increase, but is tend to decrease for both 
positive and negative patterning. This is in line with the result shown in Figure 3 and Figure 4, suggesting that PN-
to-KC connection numbers, when coupled with plastic synapses, may contribute to the generalisation-discrimination 
trade-off. 
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Supplemental Experimental Procedures 

 

The mushroom body circuit model  
We constructed a biologically constrained neuronal network, using binary neurons with global feedback inhibition, 
and implemented simple reward-based synaptic modifications. We implemented learning in both mushroom body 
input region – calyces (PN-KC synapses), and output region – lobes (KC-EN synapses).  
   
Projection neuron to Kenyon cell connectivity  
The random connectivity between projection neurons and Kenyon cells is generated in two steps. First we draw for 
each Kenyon cell 𝑗 a number of connections, 𝐶#$

% , from a uniform distribution over a user defined interval (5-15 for 
class II and 45-55 for class I). Then, we randomly choose 𝐶#$

%  unrepeated projection neurons that Kenyon cell 𝑗 
connects to. The chosen connectivity is stored in the connectivity matrix 𝐶&'(#$  using 1 for existing connections 
and 0 otherwise. The synaptic weights among PN-KC synapses are stored in the matrix 𝑊&'(#$  and initialised by 
assigning a non-zero identical weight 𝑔+ to all existing PN-KC connections (Supplemental Table). 
 

Parameter PN-KC KC-EN 

𝛼- 0.006 0.006 

𝛼( 0.007 0.008 

𝑔+ 0.2 0.2 

𝑔./0 0.4 0.4 

𝑔.12 0 0 

class II model PN-to-KC = 5-15 all KCs to two ENs 

class I model PN-to-KC = 45-55 all KCs to two ENs 
 
Supplemental Table, related to Supplemental Experimental Procedures. Model parameter used in producing 
elemental, peak shift and patterning tasks, and different classes of Kenyon cells. The first five parameters are 
related to the reward-based synaptic weight modification rule, where 𝛼- and 𝛼( are positive and negative learning 
rates respectively. The initial weights are set as 𝑔+ = 0.2 for both PN-KC and KC-EN synapses, and are bounded by 
the range [0, 0.4] by 𝑔.12	𝑎𝑛𝑑	𝑔./0. The class II Kenyon cell model has a PN-to-KC connection number uniform 
randomly drawn from 5-15 (out of 100 projection neurons), and class I Kenyon cell model has a PN-to-KC 
connection number uniform randomly drawn from 45-55 (out of 100 projection neurons). Note that a broad range of 
parameters other than the above can also reproduce the behavioural tasks described here.   
 
 
Kenyon cell sparse coding by feedback inhibition 
For each stimulus activated projection neuron (𝑁&'=100) firing pattern, Kenyon cell (𝑁#$=4000) representation is 
given by a function of the product of weight matrix PN-KC and projection neuron inputs: 

 𝑅#$ = ℎ(𝑊&'(#$ ∗ 𝑅&') (1) 

    where ℎ is a function that selects Kenyon cells that receive most intense inputs with a given Kenyon cell 
population sparseness level (e.g. 5%), and outputs a binary vector that only selected Kenyon cells are labelled as 1s 
(fired), and others are labelled as 0s (not fired). We assume that GABAergic inhibitory inputs onto the Kenyon cells’ 
dendritic regions (calyces) serve as a feedback inhibition mechanism to regulate Kenyon cell population sparseness. 
This is implemented with Matlab’s built-in ‘sort’ function, i.e. a simplified version of feedback inhibition. We also 
use a spiking model with Izhikevich spiking neurons [S12, S13] and a one-to-all global feedback neuron to simulate 
the feedback inhibition on Kenyon cells, and we show that the ‘sort’ function implemented on the present binary 



	

network generates almost identical Kenyon cell population codes as with the spiking network (Figure S2A), 
indicating that this simplification is efficient in substituting the essential function of global feedback inhibition. The 
comparison of Kenyon cell activation is done by using the similarity calculation defined below.  
 
A simple learning rule among PN-KC synapses 
Despite the evidence of associative plasticity among PN-KC synapses in bees [S14], the detailed plasticity rule is yet 
to be discovered. We here recruit a simple supervised learning rule, consistent with [S15, S16], such that:  

 𝑊&'(#$
%1 𝑡 + 1 =

𝑊&'(#$
%1 𝑡 + 𝛼-, 𝑖𝑓		𝑟 = 1, 		𝑅&'1 > 0, 		𝑅#$

% = 1, 		𝐶&'(#$
%1 = 1			

𝑊&'(#$
%1 𝑡 − 𝛼(, 𝑖𝑓		𝑟 = −1, 		𝑅&'1 > 0, 		𝑅#$

% = 1, 		𝐶&'(#$
%1 = 1

𝑊&'(#$
%1 𝑡 ,																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																		

 (2) 

    where 𝑊&'(#$
%1 𝑡  denotes the synaptic weight between activated projection neuron 𝑖 and Kenyon cell 𝑗 that have 

existing connection (𝐶&'(#$
%1 = 1),	at trial number 𝑡. In terms of neuronal activation, projection neuron 𝑖 is activated, 

if the firing strength 𝑅&'1 	is greater than 0, both in the case of binary activations (Figure S2B) and in the case of 
activations with various amplitudes (Figure S2C). Kenyon cell 𝑗 is ‘activated’ if the corresponding firing strength 
𝑅#$
% 	is equal to 1 (binary neurons). 𝑟 is the reward signal that tells the model whether a stimulus is paired with 

reward (𝑟 = 1) or punishment (𝑟 = −1), and 𝛼- and 𝛼( are the learning rates for CS+ and CS- respectively. 
Overall, the synaptic weights 𝑊&'(#$

%1  might increase or decrease linearly within a range of [𝑔.12, 𝑔./0]. Model 
parameters are listed in the Supplemental Table. Note that the very same set of parameters were used to produce 
elemental learning, peak shift and patterning learning. We argue that a robust model should support a broad range of 
behaviours that do not require tuning of parameters for any specific task. 
 
Appetitive and aversive extrinsic neurons and KC-EN plasticity 
Evidence in Drosophila suggests a separation of appetitive and aversive valence encoding among distinct extrinsic 
neurons via different KC-EN synapses. To simplify the problem, but capture the essential structural segregation, two 
extrinsic neurons are recruited, with 𝐸𝑁-	for appetitive valence encoding and 𝐸𝑁( for aversive valence encoding. 
Both of them receive all-to-one connections from all the Kenyon cells, forming parallel synapses. The Kenyon cell 
representation 𝑅#$  is then transformed into the extrinsic neuron responses separately, in a linear fashion: 

 
𝑅M'N = 𝑊#$(M'N ∗ 𝑅#$  
𝑅M'O = 𝑊#$(M'O ∗ 𝑅#$  (3) 

    where 𝑊#$(M'N and 𝑊#$(M'O	are the weight matrices from all the Kenyon cells to 𝐸𝑁- and 𝐸𝑁( respectively. 
Both of the two matrices are initialised as all-to-one connectivity and with an equal weight 𝑔+, denoted as 𝑊121P. For 
KC-EN synapses, it has been shown in fly [S6], locust [S7] and honeybee [S8] that appetitive learning in general 
leads to synaptic depression, despite some exceptions [S17]. Moreover, aversive learning in Drosophila [S9] also 
results in synaptic depression. We thus modified the learning rule for PN-KC synapses (Equation 2), such that:  

 

𝑊#$(M'N
% 𝑡 + 1 =

𝑊#$(M'N
% 𝑡 − 𝛼-, 𝑖𝑓	𝑟 = 1, 		𝑅#$

% = 1

𝑊#$(M'N
% 𝑡 ,																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒															

 

𝑊#$(M'O
% 𝑡 + 1 =

𝑊#$(M'O
% 𝑡 − 𝛼(, 𝑖𝑓	𝑟 = 1, 		𝑅#$

% = 1

𝑊#$(M'O
% 𝑡 ,																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒															

 

(4) 

    where 𝑊#$(M'N
% 𝑡  and 𝑊#$(M'O

% 𝑡  denote the synaptic weight between activated Kenyon cell 𝑗 (𝑅#$
% = 1) and 

𝐸𝑁- and 𝐸𝑁( respectively, at trial number 𝑡. Both 𝑊#$(M'N
% and 𝑊#$(M'O

% are bounded by the range [𝑔.12, 𝑔./0]. 
Appetitive learning thus will lead to a depression among only KC-EN+ synapses but not among KC-EN- synapses, 
and vice versa.  
 
Model performance metric  
Recent evidence from Drosophila suggest that the behavioural decision of the insect might be underpinned by a 
simple summation of distinct valence coding output neurons. In other words, the extrinsic neuron group is balanced 
out among naïve flies, but biased toward learned odours among trained flies. Following this assumption of simple 
integration, the model response here is measured by the preference index (𝑃𝐼), which is shown as a percentage 



	

increase or decrease of the model behavioural preference toward a stimulus (e.g., Figure 1C, Figure 2A, Figure 2C), 
calculated by: 

 𝑃𝐼 = 	−
𝑅M'N − 𝑅M'O
𝑊121P ∗ 𝑅#$

∗ 100% (5) 

    where 𝑅M'Nand	𝑅M'O are given by Equation 3, and 𝑊121P is the initial KC-EN weight matrix with an equal 
weighting. Initially the preference toward any stimulus is balanced to be 0% according to this definition, and any 
parallel changes among the two extrinsic neurons would bias the final model response toward appetitive or aversive 
stimuli. Note that the minus sign in the front here is to model the putative inhibition over sensory-motor connections 
[S8]. For example, a learned depression among 𝐸𝑁- for appetitive stimuli will eventually transform into a 
behavioural preference or positive response, e.g., proboscis extension in bees.  
    Alternatively, recent evidence also indicates that some extrinsic neurons can encode positive and negative valence 
bi-directionally, which gave decreased responses toward appetitive stimuli but increased responses toward aversive 
stimuli [S6]. It can be easily inferred that this simple summation rule described above is equivalent to this bi-
directional valence encoding among KC-EN synapses. Indeed, we also test a model with a single extrinsic neuron 
that have bi-directional KC-EN synapses, which produces identical result as the simple summation. However, 
further study is needed for a better understanding of the mushroom body output neuron circuit.   
 
Similarity Calculation 
To analyse the Kenyon cell activation similarity changes with different levels of sparseness, we introduce a 
similarity metric that is similar to Hamming distance, but only taking the activated Kenyon cells into account. Given 
two column vectors 𝑥 and 𝑦, the Similarity 𝑆 is defined as follows: 

 𝑆 =
	| 𝑗	|	𝑅#$X

% 	= 𝑅#$Y
% = 1 |	

| 𝑗	|	𝑅#$X
% = 1 |

∗ 100% (6) 

    where 𝑅#$X
%  is the 𝑗th Kenyon cell response to one pattern, and 𝑅#$X

%  the 𝑗th Kenyon cell response to another. Note 

that the cardinality | 𝑗	|	𝑅#$X
% = 1 | is exchangeable with the cardinality 𝑗	|	𝑅#$Y

% = 1 , as the number of Kenyon 
cells activated for the two patterns is the same. 
 
Absolute and differential training procedure  
In experimental studies, absolute conditioning involves repeatedly pairing a conditioned stimulus (CS+) with 
reward, without exposing the animal to unrewarded stimuli [S18, S19]. In contrast, differential training refers to a 
sequence of training with alternating and equal amount of exposure to CS+ and CS-, which forces the animal to 
form both appetitive, and aversive (or no reward) memories. In bees [S18, S19] and flies [S20], it has been shown 
that the two training procedures produce different behavioural outcomes: after absolute training the animal tends to 
recognise similar (relative to CS+) but novel stimuli as rewarding, but not after differential training, which is shown 
to be necessary in fine discriminations.  
 
Peak shift training and testing procedure  
Honeybees display the ‘peak shift’ phenomenon in olfactory learning [S21, S22]: after being trained with a 
differential training procedure on two similar odours – one paired with reward (CS+) while the other is paired with 
punishment (CS-), the bee not only responds to CS+ more strongly than to CS-, but responds most strongly to a 
novel stimulus that is further away from CS- than CS+. In other words, a shifted response peak or bias is formed. 
We here follow the established training and testing procedure for peak shift in honeybee olfactory learning. 
Specifically, each network realisation (N=100) in the experiment group is trained with 10 trials of CS+ and 10 trials 
of CS- with a pseudorandom sequence (differential training), and then is tested with the entire input continuum 
(Figure S2B). Each network realisation (N=100) in the control group is trained with 5 trials of CS+, and then is 
tested again with the input continuum. Note that we apply fewer trials here for the absolute training than the 
differential training. The reason is that with the simplified linear learning rule, equal number of training trials with 
absolute training will drive the model response change to be much bigger than with differential training, which 
makes it visually difficult to compare the two groups. 
 
 
 



	

Positive and negative patterning training and testing procedure 
Bees also can discriminate two individual odours (A and B) from their binary mixture (AB) whether the individual 
odours are being rewarded (negative patterning discrimination) or their mixture (positive patterning discrimination) 
[S23, S24]. Such discriminations have been classified as configural or ‘non-elemental’ learning, requiring the 
compound to be treated differently from its elements [S25, S26], which is often viewed as a more complex form of 
learning that involves ambiguity and nonlinearity. We here follow the established procedure for patterning 
discrimination [S24], such that we train each network realisation with 5 blocks of trials in total, each containing a 
pseudorandom sequence of 4 trials. Specifically, in positive patterning, the 4 trials are A-, B-, and twice of AB+, and 
in negative patterning the 4 trials are A+, B+ and twice of AB-. After each block of training, the model responses to 
A, B, and AB mixture are tested.  
 
Three different sets of input patterns used in patterning discrimination 
To test if the model can solve the patterning task under various input conditions, three sets of inputs are used: set1 – 
artificial projection neuron patterns for input A and B that have moderate level (40%) of overlap; set2 – artificial 
projection neuron patterns for input A and B that have no overlap; set3 – realistic Projection neuron firing patterns 
used in [S11], which is generated from Drosophila olfactory receptor neuron responses to 110 different odours, and 
then modelled by [S11] to simulate the realistic olfactory projection neuron firing patterns. Since there are only 20 
projection neuron responses for each odour [S11], we here replicate each projection neuron response for a given 
odour into 5 identical responses, such that each odour is represented by 100 projection neurons in total. As in real 
honeybees, each glomerulus is innervated by ~5 projection neurons that are likely to convey more or less the same 
information. Finally, we normalise those projection neuron firing rates to a range of [0, 1], with the low rates (<0.2) 
truncated to be 0. During patterning discrimination, two odours are randomly drawn from the 110 odours for each 
network realisation.  
 
Testing peak shift performance in learning rate space 
To evaluate the model’s performance with different sets of learning rates – the amount of synaptic weight 
modification when the reward signal is indicated. A positive learning rate here refers to the amount of weight change 
in each trial for CS+, and negative learning rate to the amount of weight change in each trial for CS-. Each set of 
learning rates is generated (or each square in the heat maps) by fixing positive learning rate – that used to associate 
CS with reward – in both PN-KC synapses and KC-EN synapses, with a value of an arbitrary choice (0.006), and by 
varying the negative learning rate for both synapses from 0.001 to 0.012 with an incremental of 0.001, which 
displays as a 2D (12 x 12) learning rate space (heat maps in Figure 3).We define the probability of successful 
reproduction in peak shift as how many groups (N = 10) of virtual bees can reach statistical significant level (P < 
0.05) in paired-sample t test on the differences between peak responses (if any) and the responses to CS+. Within 
each group, 10 network realisations (virtual bees) are tested for training induced peak responses, which refer to the 
maximum responses to a novel stimulus that is different from CS+, but also is further way from CS- than CS+. We 
show that a large number of learning rate sets can reproduce peak shift effect. Interestingly, a large negative learning 
rate on KC-EN synapse, in relative to the positive rate, seems to be crucial, which is in accordance with [S21]. In 
addition, when comparing with the heat map generated by only allow learning in KC-EN but not PN-KC, there is 
almost no peak shift generated, indicating that the PN-KC synapses is crucial in accounting for the peak shift effect, 
possibly by reshaping Kenyon cell representation for stimuli through learning.  
 
Testing patterning discrimination performance in learning rate space 
Similarly, we use the same setup for learning rate space to evaluate the performance of positive and negative 
patterning discrimination. The probability of behavioural reproduction here is defined as how many groups (each 
group N = 10) of virtual bees that can reach statistical significant level (P < 0.05) in paired-sample t test after 
training. In addition, to test the model on input patterns with various similarity levels, we use 10 different input 
pattern pairs that have similarity between 0% and 90% for each group, with an increment of 10%. Therefore, the 
maximum of 10 occurrences here means that the virtual bees have successfully learned to differentiate patterns and 
mixtures with the given learning rate sets, in all the input pattern pairs that have different similarity levels. It is clear 
that the model has good performance in most of the learning rate sets. Strikingly, when comparing again the both 
synapses case with KC-EN only, we found that the model performs even better with the latter, indicating that naïve 
Kenyon cell sparse representation is already suitable for discrimination; learning within PN-KC synapses here might 
even hinder downstream discrimination.  
 
 



	

Testing model with a simple generalisation and discrimination task 
To compare the model capacity with two different classes of Kenyon cells for generalisation and discrimination, a 
simple task for generalisation and discrimination is introduced. For generalisation, the class I Kenyon cell model 
(each Kenyon cell receives from 45-55 projection neurons) and the class II Kenyon cell model (each Kenyon cell 
receives from 5-15 projection neurons) are trained independently with various pairs of artificial patterns, and with 
plastic and fixed PN-KC synapses respectively. Specifically, each pair of training patterns has a particular level of 
similarity, depending on the relative positions of the two patterns in the input continuum. After absolute training on 
the two patterns (both are CS+), the models’ performance for a novel pattern that lies in the middle of the positions 
of the two is measured, and is compared with the response to the two training patterns respectively. The 
generalisation score (𝐺𝑆) is given by the sum of the difference between the response to the middle novel pattern and 
the trained response to the two patterns separately (𝐺𝑆 = 	2 ∗ 𝑃𝐼2\]^_ − 𝑃𝐼$`Na − 𝑃𝐼$`Nb). Finally, the generalisation 
score is normalised to the range [0, 1] to allow an overall comparison of different conditions and models with 
different classes of Kenyon cells. Similarly, for discrimination score (𝐷𝑆), class I Kenyon cell model and class II 
Kenyon cell model are trained differentially with various pairs of artificial patterns, and the difference between the 
trained response to CS+ and to CS- is measured (𝐷𝑆 = 	𝑃𝐼$`N − 𝑃𝐼$`O). Finally, the discrimination score is also 
normalised to the range [0, 1]. In both cases, a high score indicates a good generalisation / discrimination capacity 
and vice versa (10 network realisations for each training pairs).  
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