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Abstract. 1. Pollinators, such as bees, face the complex challenge of efficiently
exploiting patchily distributed floral resources across large landscapes.

2. In the present study we consider the utility of spatial network statistics to analyse the
foraging patterns of bees moving between feeding sites at various spatial and temporal
scales.

3. We explain how spatial movement networks can be derived theoretically and
experimentally to describe bee foraging decisions.

4. We illustrate this approach by analysing six datasets of bumblebees and honeybees
foraging in arrays of artificial flowers, and showing how network metrics change as
foragers gain experience with the spatial distribution of feeding sites.

5. We compare network analyses with more conventional statistics used to characterise
bee foraging movements and discuss the implications of our novel statistical and
modelling approach for pollination ecology.

Key words. Bumblebees, foraging, honeybees, movement ecology, pollination, route
optimisation, spatial networks.

Introduction

Bees play a key role in the reproduction of wild and cul-
tured plants. Over recent years, their widespread declines have
raised considerable concern for food security and the sustain-
ability of our ecosystems (Goulson et al., 2015; Klein et al.,
2017). Central to understanding the impact of pollinator loss
on plant reproduction is the foraging behaviour of bees (Thom-
son, 1986; Waser, 1986). Most bees are central-place foragers,
meaning that they collect food (nectar and pollen) to provision
their brood in a single nest (Michener, 2000). By exploiting
plants and developing foraging routes to visit them, individ-
ual bees may bias pollen flow and fashion the genetic struc-
ture of plant populations, therefore calling for more research
of bee spatial strategies at the individual and collective lev-
els (Ohashi & Thomson, 2009; Burkle & Alarcón, 2011;
Mayer et al., 2011).

Historically, bees were assumed to use simple movement
rules that would yield maximal energy gains to exploit patchily
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distributed resources, such as moving between nearest unvisited
flowers (Ohashi et al., 2007), making short trips after encoun-
tering highly rewarding flowers (Chittka et al., 1997) or keep-
ing constant heading directions between visiting flowers (Pyke
& Cartar, 1992). While these rules of thumb may hold true
when bees forage at small spatial scales (within an inflores-
cence or a flower patch), mounting evidence shows that this is
not the case at larger spatial scales, when bees move between
distant locations (flower patches or plants). In these conditions,
foragers of many bee species tend to develop stable foraging
routes that they follow for several hours or days (e.g. Euglos-
sine bees: Janzen 1971; bumblebees: Heinrich, 1976; honey-
bees: Buatois & Lihoreau, 2016). These routes are sometimes
called traplines in analogy to the fixed circuits that trappers
follow when examining a number of traps distributed widely
in space (Thomson et al. 1997). Route formation is based on
the acquisition of spatial memories encoding the location of
the different food resources, the colony nest site, and other
prominent environmental features (e.g. visual landmarks) (Col-
lett et al., 2013). With training, bumblebees and honeybees can
learn to find the shortest path to visit a few artificial flowers
(equivalent to natural flower patches) once and return to the

4 © 2017 The Royal Entomological Society



Network pollination 5

nest (Bombus impatiens: (Cresson; Apidae) Ohashi et al., 2007;
Bombus terrestris: (Linnaeus; Apidae) Lihoreau et al., 2012a;
Apis mellifera: (Linnaeus, Apidae) Buatois & Lihoreau, 2016),
an optimisation behaviour analogous to solving the Travelling
Salesman Problem in graph theory (Cook, 2012). This mathe-
matical problem is notoriously difficult (if not impossible) to
solve for large graphs, because the number of possible paths
increases factorially with the number of nodes in the graph (e.g.
6 paths for 3 nodes, >3 million paths for 10 nodes), and finding
efficient solutions often requires complex algorithms and sys-
tematic approaches (Polyakovskiy et al., 2014; Dorigo & Gam-
bardella, 2016).

While there is evidence that bees exhibit routing behaviour
in nature (Janzen, 1971; Heinrich, 1976), to what extent
these observations in simplified experimental conditions can
be extrapolated to the field, where individuals may interact
to exploit numerous highly variable resources scattered across
large landscapes, is an open question.

Field data on such multi-destination routes among flower
patches are even more complex and challenging to analyse,
and conventional behavioural metrics do not suffice to capture
detailed information about routing behaviour under field con-
ditions (Thomson et al., 1997; Makino & Sakai, 2004, 2005;
Makino, 2013; Lihoreau et al., 2016). We argue that network
statistics derived from graph theory hold considerable promise
to characterise these complex movement patterns at the indi-
vidual and collective levels and to identify the decision rules
underpinning spatial strategies. In developing routes between
flowers, foragers form movement networks embedded in space
(Barthélemy, 2011), where ‘nodes’ are feeding locations (flower
patches or plants), and ‘edges’ are flight paths between them
(see examples in Fig. 1a–e) (Thomson et al., 1997; Lihoreau
et al., 2016). These spatial movement networks are directed,
meaning that individuals move from one particular location to
another (movement vectors). Networks are also weighted so
that the thickness of edges is proportional to the frequency
of movements between nodes. Because most bee species are
central-place foragers, their spatial movement networks also
include the nest site, a specific node at which every flower
visitation sequence starts and ends. Therefore, in principle, an
optimal movement network for a bee connects all flowers and
the nest using the shortest possible path (optimal network in
Fig. 1e). Discrete temporal network analysis can then be per-
formed depending on the time intervals with which a visi-
tation matrix is built. For instance, matrices may be devel-
oped by considering flower visits made in a single foraging
bout (dynamic network) or by cumulating the flower visits
of several foraging bouts (static network). A major advan-
tage of network statistics is that they allow for analyses of
very large spatial datasets and the derivation of new empir-
ically testable hypotheses (e.g. Perna & Latty, 2014; Jacoby
& Freeman, 2016). Several analytical packages (e.g. igraph,
sna, tnet packages in R, graph-tool in Python, UCINET) and
both local metrics (e.g. measures describing the level of impor-
tance of a node in a network) and global metrics (e.g. measures
describing the general level of connectivity of the entire net-
work) can be readily calculated to characterise space use by
pollinators from an individual-based point of view to measure,

compare and predict their behaviour across different temporal
scales.

In a recent field survey, Dupont et al. (2014) applied an
individual-based plant–pollinator network analysis to flower
visitation data of different bumblebee species. The study showed
significant modularity in space use by bees based on plant char-
acteristics so that foragers tended to visit patches of aggregated
plants with numerous flowers and use taller plants to move
from one module to another (Dupont et al., 2014). Although the
analytical approach developed in this study is very appealing,
field surveys only provide partial information about the foraging
experience of individual bees, the location of their nest relative to
different plant patches, and the temporal dynamics of their forag-
ing patterns. All these parameters are critical in determining bee
foraging behaviour (Chittka & Thomson, 2001). Experimental
advances on model bee species, such as bumblebees and honey-
bees, using artificial flowers delivering controlled rates of food
resources combined with automated movement tracking, now
allow for collecting high-resolution spatial and temporal data on
bee foraging patterns in complex, yet controlled, environments
[e.g. motion detection cameras on flowers: Lihoreau et al., 2016;
Radio Frequency Identification (RFID): Ohashi et al., 2010; har-
monic radars: Lihoreau et al., 2012b; QR tags: Crall et al., 2015;
3D video tracking: Ings & Chittka, 2008]. Extensive recordings
of individual-based data using these semi-field approaches pro-
vide an interesting opportunity to start examining the cognitive
processes underpinning the foraging patterns of bees and how
they change across time in ecologically relevant conditions.

In the present study, we describe how spatial network statistics
can be used to analyse the foraging patterns of bees, both at local
and global levels. We illustrate the potential of this approach
for comparative analyses by statistically comparing spatial
optimisation in the movement patterns of bees across spatial
scales, the number of flowers and flower configurations using
standard network metrics. Our analysis is based on published
movement datasets of bumblebees and honeybees of known
age, foraging experience and colony origin, foraging in arrays
of artificial flowers in the lab and in the field. To validate
our approach, we compare our results with analyses of more
conventional behavioural metrics used in previous studies, such
as the number of re-visits to flowers and overall travel efficiency
(distance/number of flowers visited).

Material and Methods

Experimental data

Six datasets of bee flower visitation sequences were anal-
ysed. Three datasets were obtained on the bumblebee Bombus
terrestris (experiment 1: Lihoreau et al., 2012a; experiment 2:
Lihoreau et al., 2011; experiment 3: Lihoreau et al., 2012b). The
three other datasets were obtained on the honeybee Apis mellif-
era (experiments 4–6: Buatois & Lihoreau, 2016).

All the datasets were generated according to the same general
methodology and are thus comparable. In all experiments, bees
were individually marked (coloured number tags or paint dots on
the thorax) and maintained in colony nest boxes (bumblebees)
or hives (honeybees) equipped with a transparent, colourless,
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Fig. 1. Examples of local and global metrics calculated on a bee spatial movement network. Nodes of the network (white circles) represent flowers
(F1–F6) and the colony nest (black square). Edge directions indicate individual movements between flowers and the nest. Edge thickness is proportional
to the frequency of bee movements from one flower to another (i.e. edge weights). In this hypothetical network, from (a) to (e), the forager tends to
increase the number of visited flowers with experience (t0, t0 + 1, t0 + 2, t0 + n) while reducing both the number of revisits to flowers and the time
needed to visit all (i.e. network optimisation). Examples of local network measures are shown (black arrows): (i) High clustering coefficient calculates
the degree to which neighbours of a given node are themselves highly connected; (ii) Authority score indicates the existence of highly visited nodes;
(iii) High betweenness centrality value counts the number of shortest paths that pass through a focal node. (f) Hypothetical network illustrating two
common network motifs (red arrows) in bee movement data (motifs 3 and 6, see Fig. 3). [Colour figure can be viewed at wileyonlinelibrary.com].

entrance tube. The tube was fitted with a series of shutters
to control all departure and arrival of foragers at the colony.
Workers collected sucrose solution (40% w/w) on artificial
flowers outside the colony. Flowers consisted of a blue plastic
landing platform (diameter = 60 mm) with a yellow feeding
spot in the middle. Bees were initially pre-trained on a flower
from which they could collect ad libitum sucrose solution. Each
individual was tested alone. A regular forager that made at least
five foraging bouts (foraging trips starting and ending at the nest
colony box) in 1 h was selected. The crop capacity of this forager
was estimated by averaging the total volume of sucrose solution
collected from a training flower over another three foraging
bouts. The forager was then tested with all test flowers placed
in a specific spatial arrangement (see experimental arrays in
Fig. 2). During the test, each flower provided the same amount of
sucrose solution, chosen so that the bee had to visit all flowers to
fill its nectar crop to capacity before returning to the colony nest

box (e.g. 1/5th of the crop capacity available in each flower in an
array of five flowers). Flowers were refilled by the experimenter
at the end of each foraging bout, meaning that any revisit to a
flower within the same foraging bout was not rewarding. Bees
were tested for 22–80 consecutive foraging bouts in the same
array of flowers. All flower visits (when a bee landed on a flower)
were recorded and used to reconstruct the complete foraging
history of each bee.

Experiments were conducted in six different arrays, varying
in their spatial scale, their number of flowers, and the spatial
configuration of flowers. Experiments 1, 2, and 4 (Fig. 2a,b,d)
were completed in flight rooms at small spatial scales and with
controlled illumination (Lihoreau et al., 2011, 2012a; Buatois
& Lihoreau, 2016). Experiments 3, 5, and 6 (Fig. 2c,d,e) were
completed in outdoor open fields at a small spatial scale for
experiment 5 and large spatial scales for experiments 3 and
6 (Lihoreau et al., 2012b; Buatois & Lihoreau, 2016). Details
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Fig. 2. Spatial arrangements of the artificial flowers (F1–F6) and the colony nest (black square) in the six experiments under investigation (scale is in
meters). Number of bees (n) and foraging bouts (fb) are shown for each experiment. (a) Experiment 1: bumblebees in the lab (Lihoreau et al., 2012a).
(b) Experiment 2: bumblebees in the lab (Lihoreau et al., 2011). (c) Experiment 3: bumblebees in the field (Lihoreau et al., 2012b). (d) Experiment 4:
honeybees in the lab (Buatois & Lihoreau, 2016). (e) Experiment 5: honeybees in the field (Buatois & Lihoreau, 2016). (f) Experiment 6: honeybees in
the field (Buatois & Lihoreau, 2016). Spatial scales are provided for each array (i.e. SMALL or LARGE).

about the spatial arrangement of flowers, the number of bees
tested, and the numbers of foraging bouts per bee are given in
Fig. 2.

Network analyses

We built spatial networks of bee foraging movements in which
flowers were nodes and movements were edges (Fig. 1). Edges
weight corresponded to the frequency of movement between

flowers. To describe foraging movements and compare them
across experimental conditions and species, we calculated three
local network metrics describing the role of each flower in the
bee movement network and one global network metric to infer
on the efficiency of the network structure.

Local network measures. At a local level, the ‘weighted
clustering coefficient’ was calculated, which assesses the degree
to which nodes tend to cluster together (Barrat et al., 2004). Here

© 2017 The Royal Entomological Society, Ecological Entomology, 42 (Suppl. 1), 4–17



8 Cristian Pasquaretta et al.

a high clustering value indicates that neighbouring flowers of
a given flower are themselves highly connected, i.e. frequently
re-visited (Fig. 1b).

We used the ‘Kleinberg’s authority score’ (Kleinberg, 1999) to
measure the relative importance of a node in a network (Fig. 1c).
Given A, an individual movement matrix across flowers, the
Kleinberg’s authority score is defined as the principal eigen-
vector of the inverted matrix t(A)*A. This metric assigns large
values to flowers that are most often used while accounting for
the number of visits to adjacent flowers (i.e. flowers connected
by at least one edge). Therefore, a high Kleinberg’s authority
score indicates that a specific flower is more often visited than
all its neighbour flowers. This may be the case, for instance, at
the early stages of a route development when bees often return to
a reference flower from which they explore and attempt to locate
new flowers (Ohashi et al., 2007; Lihoreau et al., 2010, 2016).

We calculated the ‘weighted betweenness centrality’. This
metric reflects the importance of a node as an intermediary of
the network, based on the number of shortest paths connecting
all pairs of nodes that pass through the focal node (Opsahl
et al., 2009). In a bee movement network, a high weighted
betweenness centrality characterises a flower that is acting as
a bridge among multiple other flowers (Fig. 1d).

Because the aim of the study was to characterise general
trends of spatial optimisation by bees across time at the network
level (route efficiency) and not at the node level (role played
by individual flowers), for all the local metrics we calculated
mean values over all flowers at each foraging bout. Betweenness
scores were normalised according to an algorithm that weights
the betweenness value for the number of flowers visited in the
network (Freeman, 1979). Authority scores were scaled from
0 to 1. Clustering coefficients vary between 0 and 1 and need
no normalisation. In these conditions, an optimal network (in
which a bee would visit all flowers once and return to the
nest by travelling the shortest distance to visit all flowers) and
a suboptimal network (in which a bee would travel longer
distances for visiting the same amount of flowers) would be
characterised by the maximum average betweenness of 0.5,
the maximum average authority score of 1, and the minimum
average clustering coefficient of 0 (Fig. 1e).

Global network measures. At the global level, the triadic
structures of the network were examined, i.e. motifs (Milo et al.,
2002), which represent triadic patterns of connection between
nodes in a directed network. Network motifs can be repre-
sentative of various biological processes such as information
flow (Nandi et al., 2014), resource exchange (Quevillon et al.,
2015) or disease spread (Waters & Fewell, 2012). In a bee
movement network, the analyses of network motifs might help
to identify behavioural rules underpinning trapline formation
(Fig. 1f) while allowing for unbiased comparison across differ-
ent datasets (Shizuka & McDonald, 2015). Whereas a detailed
temporal network analysis of motifs might be used to better
understand the mechanisms of network functionality (Kova-
nen et al., 2011), here a discrete approach was used by count-
ing all the 16 possible triadic motifs to connect three flowers
(including the nest) observed at each foraging bout and thus

not strictly related to the exact temporal sequence of visits on
flowers (Fig. 1f). For each experiment, the triadic motifs of the
observed bee foraging networks at each foraging bout were com-
pared with those of the theoretical optimal network connecting
all flowers and the nest using the shortest possible path. As
only two out of the 16 possible triadic motifs (Fig. 3a–f) can
be observed in the optimal movement network (Fig. 1e), these
global measures inform us about the overall efficiency of the
routes developed by bees.

Statistical analyses

Local network measures. All analyses were conducted in the
statistical environment R (i.e. version 3.2.3). For each foraging
bout of each bee we extracted weighted clustering coefficient
values, authority scores, and weighted betweenness centrality
values of each flower, using the functions ‘clustering_local_w’
and ‘betweenness_w’ in the tnet package (Opsahl, 2009) and
the function ‘authority. scores’ in the igraph package (Csardi
& Nepusz, 2006). We ran three different regression models
for weighted betweenness, authority, and weighted clustering
coefficient values using the sequential number of foraging
bouts, type of array (i.e. small or large spatial scale), species
(i.e. bumblebee or honeybee), and all the interactions among
these predictors as fixed effects. Individual identity nested
in an experimental array was used as a random effect in all
models. Model selection was carried out for the three different
parameters ranking candidate models according to their Akaike
Information Criterion (Akaike, 1985). Beta regression for the
three averaged local network measures was used (clustering
coefficient, weighted betweenness centrality, and authority
scores) because their values were constrained between 0 and
1. A zero inflation method was applied using the Beta Inflated
(BEINF) family function from the gamlss package (Rigby &
Stasinopoulos, 2005). Model selection of the Beta regression
mixed models is shown in the supplementary materials (Tables
S1–S3). Because network metrics are correlated, a Bonferroni
correction was applied by setting the alpha level of significance
at 0.017 (Tylianakis et al., 2007).

Global network measures. Motifs were calculated using the
‘triad.census’ function in the ‘igraph package’ (Csardi &
Nepusz, 2006). Only two out of the 16 possible triadic motifs
(motif 2 and 6: Fig. 3a–f) are representative of the optimal
movement network (Fig. 1e). Depending on the number of flow-
ers in the array, motif 1 (triadic structure where the three
nodes – a, b, c - have no connection among them, i.e. the empty
graph a, b, c) can also occur and is represented for a maximum
of 7 times in a network with 7 flowers. Motif 2 (triadic structure
with a single connection between the three nodes, i.e. a > b, c)
and motif 6 (triadic structure where a > b > c are all connected
by two directed lines) of the optimal movement network can also
occur at different frequencies depending on the network size (i.e.
for 7 flowers: 21 and 7; for 6 flowers: 12, 6; for 5 flowers: 5,
5; as indicated by red horizontal lines in Fig. 3). We analysed
the tendency of bees to modify their motifs frequency with time
by applying a generalized linear mixed effect model for count
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Fig. 3. Distribution of all possible network triadic motifs across foraging bouts. For each motif, the x-axis represents the temporally ordered foraging
bouts. Red horizontal lines indicate the frequency of each motif expected in the optimal network. Best fitted lines obtained from generalised linear
models using foraging bouts as predictor and frequency of motif as response variable are shown for each motif along with their standard errors (blue
line and shaded grey area). Significant effects of time on the frequency of each motif are highlighted with asterisks. GLMM estimates, Z-values and
P-values for each motif in each experiment are available in Tables S4–S9. The relationship going in the opposite direction of the optimal network is
numbered in red. Alpha level is set at 0.05. Spatial scales are provided for each graph (i.e. SMALL: a,b,d,e; or LARGE: c,f, see also Fig. 2). [Colour
figure can be viewed at wileyonlinelibrary.com].
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data (i.e. GLMM with Zero Inflated Poisson distribution error)
using the observed frequency for each motif and for each dataset
as response variable, the number of foraging bouts as predictor,
and individual identity as random effect.

Other measures. To illustrate the benefits of using the net-
work approach relative to more conventional analyses, we also
calculated non-network measures used in previous studies for
assessing the ability of bees to develop efficient routes (Lihoreau
et al., 2011; Lihoreau et al., 2012a, 2012b; Buatois & Lihoreau,
2016). For each foraging bout of each bee, we calculated the
number of revisits to flowers, and the distance travelled (assum-
ing straight lines between flowers) divided by the number of
flowers visited. Both measures of route efficiency are expected
to decrease with increasing network efficiency and reach a min-
imum in an optimal movement network. A GLMM was applied
for count data to study the impact of experience (foraging bout)
on the number of revisits to flowers and a linear mixed effect
model (LMM) for the travelled distance divided by the number
of flowers visited. Both models were run for each experiment
using individual identity as a random effect.

Results

Local network measures

The average weighted betweenness centrality increased
as bees accumulated foraging experience in the six exper-
iments [estimatebout = 0.066, standard error (SE) = 0.004,
t = 17.11, P < 0.001], indicating that individuals tended to
visit all flowers at a similar frequency by the end of training
(Fig. 4). This tendency was stronger in large spatial scale
arrays (estimatesmall_array = −0.067, SE = 0.005, t = −13.55,
P < 0.001). Interestingly, in small spatial scale arrays
bumblebees showed higher average weighted betweenness
centrality (estimatehoneybees = −1.172, SE = 0.164, t = −7.15,
P < 0.001) and a tendency to develop optimal networks faster
(estimatehoneybees = −0.020, SE = 0.008, t = −2.533, P = 0.011)
than honeybees (Fig. 4).

The average Kleinberg’s authority scores also increased
as bees accumulated experience in the six experiments
(estimatebout = 0.083, SE = 0.03, t = 2.781, P = 0.004), mean-
ing that all flowers became equally important in the network.
For both bee species, the average authority scores were
lower in small spatial scale arrays than in large spatial scale
arrays (estimatesmall_arrays = −0.446, SE = 0.103, t = −4.334,
P < 0.001). However, honeybees had larger average author-
ity scores than bumblebees in the small spatial scale arrays
(estimatesmall_arrays_honeybees = 0.582, SE = 0.111, t = 5.229,
P < 0.001) meaning that honeybees tended to use all possible
connections between flowers equally whereas bumblebees only
used a few.

The average clustering coefficient tended to decrease with
time, as bees accumulated foraging experience (Fig. 6). Specif-
ically, bumblebees showed a significant decrease in average
clustering coefficient while honeybees maintained stable val-
ues throughout the experiments (estimatebout_honeybees = 0.018,

SE = 0.004, t = 4.185, P < 0.001). Honeybees showed a
completely different trend at small spatial scales, by increasing
their average clustering coefficient scores with experience
(estimatehoneybees_small_arrays = 0.407, SE = 0.148, t = 2.752,
P = 0.006). This again illustrates the much-reduced route opti-
misation efficiency of honeybees in comparison to bumblebees
at small spatial scales (Fig. 6).

Overall, these changes in all three local network measures
were more pronounced at larger spatial scales, where flowers
were distant from each other and the colony nest, both for
bumblebees and honeybees (Figs 4–6).

Global network measures

While bees initially used the 16 possible motifs to link flowers,
they gradually reduced the number of motifs to only use two of
them by the end of training (motifs 2 and 6), a behaviour that
is characteristic of route optimisation (Fig. 3). This tendency
was less pronounced for honeybees at small spatial scales
(Fig. 3d and e). Analyses of the frequency usage of each motif
confirmed that honeybees at small spatial scales often presented
opposite tendencies than honeybees at large spatial scales or
bumblebees at all spatial scales (Fig. 3d: motifs 3, 7, 8 and 15;
Fig. 3e: motifs 4, 5, 10 and 15) (for detailed motifs analysis
see Tables S4–S9).

Other measures

Conventional statistics for bee movement analyses showed
trends towards a general increase in movement efficiency with
experience. In all experiments, bees decreased the number of
revisits to flowers as they accumulated foraging bouts (Table
S10). Bees also tended to decrease their travelled distance
divided by the number of visited flowers, except in the case of
honeybees foraging in small spatial scale arrays (Table S10).

Discussion

Network analyses are increasingly used in behavioural and eco-
logical research, providing a whole new range of metrics to
describe and model interactions between individuals and their
environment (Croft et al., 2008; Jeanson, 2012; Pinter-Wollman
et al., 2013). In pollination ecology, this approach has proved
particularly powerful to describe interactions between plant
and pollinator species, for instance using undirected bipartite
networks based on field surveys of pollinator abundance (e.g.
(Fontaine et al., 2006; Bascompte & Jordano, 2007; Campbell
et al., 2011; Burkle et al., 2013; Coux et al., 2016). Here we
show how spatial network analyses can be developed to study
the movement patterns of individual bees exploiting multiple
feeding locations at various spatial and temporal scales in sim-
plified experimental conditions. We argue that this approach
holds considerable promise to analyse pollinator movements in
more complex and ecologically realistic experimental designs
and to generate new empirically testable hypotheses for pollina-
tion ecology research.

© 2017 The Royal Entomological Society, Ecological Entomology, 42 (Suppl. 1), 4–17
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As illustrated above, bee movement patterns can be described
in terms of local and global network metrics that predictably
change as individuals accumulate foraging experience. For
instance, in a simple situation where only one bee exploits a
stable array of flowers refilled between each foraging bout,
both average betweenness values and average authority scores
increased with time. In contrast, the average clustering of
flowers decreased with time as bees started to develop optimal
or suboptimal stable movement networks. This tendency for
optimisation of spatial movement networks was also reflected
in the dynamics of motif usage, resulting in bees increasing
their usage of the only two motifs representative of an optimal
foraging route. Interestingly, and in accordance with previous
studies (e.g. Saleh & Chittka, 2007; Lihoreau et al., 2012a;
Buatois & Lihoreau, 2016), we found that bumblebees and
honeybees rarely use optimal spatial networks at small spatial
scales, where the cost of using a longer (suboptimal) path
may be negligible. In contrast, foragers bees always used
optimal spatial networks at large spatial scales, suggesting that
they use more complex optimisation movement rules in more
costly conditions. These results were confirmed with more
conventional statistical approaches (e.g. flower re-visits, travel
efficiency), thereby validating our approach. Importantly, the
global network approach, based on motif analyses, brought new
insights into the spatial behaviour of bees. For instance, the
foraging patterns of honeybees were characterised by frequent
back and forth movements between flowers (Fig. 6d - i.e. motifs
7 & 8) and disproportionate usage of specific flowers or local
hubs (Fig. 6d – i.e. motif 4).

The aim of this exploratory study was to introduce spa-
tial network analyses for characterising bee movement patterns
using relatively standard metrics. Further developments of this
approach will provide a powerful, complementary, analytical
tool to conventional behavioural metrics to inform researchers
about spatial processes that are not captured by other measures.
This approach should focus more on global measures of path
optimality (e.g. network path length, geodesic distance ‘Wasser-
man & Faust, 1994’) to discriminate these different scenarios.
For instance, network triads give new information about specific
movement routines that may be repeated within a route, but that
are hardly detectable with current measures of sequence repeata-
bility (Thomson et al., 1997; Ayers et al., 2015). Ultimately, a
major challenge for future studies will be to consider the high
levels of heterogeneity among flower resources that bees may
face in nature, taking into account variation in resource reward
quantity and quality, signals, and competition among foragers
in addition to spatial constraints of resource locations, to extend
our approach to field conditions. Experimentally, bumblebees
foraging in arrays of artificial flowers providing different nectar
rewards face a trade-off between maximising their nectar intake
rate and minimising travel distances when developing traplines
(Lihoreau et al., 2011). Analyses on non-averaged local met-
rics could be used to capture the effect of resource diversity in
network formation and bring new insights into how bees inte-
grate memories of multiple individual flowers in their spatial
memory. The Kleinberg’s authority score likely informs us about
how bees use flowers as reference points relative to neighbour-
ing flowers, perhaps to locate new flowers at the beginning of

route formation. The weighted clustering coefficient is a mean to
determine the level of connections between sub-groups flowers,
a measure that should greatly vary during the process of route
optimisation. Other network measures, not used here, may also
help understand how bees change their foraging area with expe-
rience or in the face of competition [e.g. modularity in Dupont
et al. (2014)].

While some of the predictions tested here may seem rather
intuitive, our analysis of bumblebee and honeybee movement
patterns in relatively simple foraging conditions aims at illus-
trating how network statistics could serve future research in
field and semi-field conditions. Motif network analyses offer the
possibility to statistically compare networks to each other, either
for the same individuals at different stages of route formation,
or between different individuals, and between different species.
Characterising the spatial foraging strategies of a wider range
of pollinators, including wild and managed species is a key
challenge of pollination ecology to identify and compare the
real impact of these species on pollination services (Garibaldi
et al., 2013). For instance, our preliminary analysis suggests
that at small spatial scales bumblebees display more efficient
spatial movements than honeybees. Bumblebees tended to
reach a frequency of each triadic structure that would lead to
an optimal foraging network, whereas honeybees often showed
the opposite behaviour. A possible explanation is the difference
in social lifestyle between these two pollinator species. Hon-
eybees, in contrast to bumblebees, have evolved a unique food
recruitment system (the waggle dance) by which successful for-
agers communicate locational information about food resources
to their nestmates upon their return to the hive (von Frisch,
1967; Dornhaus et al., 2006). These insects may thus invest less
in individual sampling and efficient route learning than species
lacking the means to communicate foraging locations, such as
bumblebees (Buatois & Lihoreau, 2016). Another possibility
is the difference of typical foraging range between the two
species. While bumblebees rarely cover more than 3 km to
exploit floral resources (Osborne et al., 2008), honeybees can
travel more than 10 km within a single foraging trip (Pahl et al.,
2011), suggesting that they are better adapted to long flights and
could start exhibiting optimisation movement patterns at larger
spatial scales than bumblebees. Systematic comparisons of both
species across a wider range of spatial scales will be needed to
test these hypotheses.

Another key advantage of network analyses is that they allow
for working on complete (raw) datasets and thus reduce the
risks of arbitrarily discarding important information. In the
case of pollinators, such approach may allow identification
of specific movement patterns that occur at the early stage
of route learning, for instance, exploration flights to locate
flowers and store them in spatial memory, or exploitation
flights to return to familiar locations (Woodgate et al., 2016).
Further development of pollinator movement networks may
also include detailed dynamic temporal analyses of flower
visitation sequences, which might reveal the differential effect
of the individual experience on the probability to optimise the
foraging route. Stochastic agent-based methods (Snijders et al.,
2010) recently applied to animal social networks (Boucherie
et al., 2016; Pasquaretta et al., 2016), may also prove useful
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to integrate rate of change of flower visitation sequences. New
metrics could be developed to estimate network efficiency
to account for the specificity of the structure of bee spatial
movement based on individual experience. For instance, the
direct integration of probability values based on the spatial
distances between flowers will allow for a finer calculation
of local network metrics which could be used to characterise
the individual learning process and compare the likelihood to
obtain an optimal foraging route depending on the early spatial
experience of the bee. Explicit consideration of the nest as
a specific node in the network, different from flowers, may
also bring useful information about bee network dynamics and
efficiency.

For all these reasons, we believe that pollinator movement
networks constitute a highly promising conceptual framework
for studying plant-pollinator systems from a mechanistic point
of view in complement to more conventional behavioural mea-
sures. Ultimately, a comprehensive understanding of bee move-
ment patterns between plants may provide new fundamental
insights into pollination processes and the genetic structural-
ism of plant populations. The development of optimal routes
by individual bees between particular plants can have impor-
tant and predictable effects on plant reproduction and inbreeding
(Ohashi & Thomson, 2009). Advances in DNA pollen analyses
(see Clare et al., 2013; and metabarcoding; Pornon et al., 2016)
now allow identification of flower species visited by individual
bees during a given foraging trip. One can readily downscale the
approach at an intraspecific level using pollen DNA and more
variable genetic markers (e.g. microsatellite; Arif et al., 2010)
to identify individual plants visited by pollinators and infer pat-
terns of pollen flow within a plant population that can then be
verified by paternity analyses using plant progeny genotypes for
these markers (Bernasconi, 2003). Coupling these approaches
with existing models of bee movements (Lihoreau et al., 2012b;
Reynolds et al., 2013; Becher et al., 2016) will provide critical
information about how the foraging strategies of bees directly
influence pollen transfer and plant mating patterns across land-
scapes, and therefore a better assessment of consequences of bee
declines on pollination.
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