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Chapter 4 Advertisement in flowers 
 
colours cause the animal's photoreceptors to send to the brain, and how the 
brain integrates the signals.  This approach was taken by Menzel and 
Backhaus (1989) and Backhaus (1991). They calculated photoreceptor 
excitations using Equations 4-2 to 4-4, and postulated that the photoreceptor 
signals are integrated by means of two types of colour opponent processes, 
one of which is UV – bluegreen antagonistic, and another which is blue – UV-
green antagonistic. The excitation values of the two colour opponent 
mechanisms A and B are determined by  
 
A = -9.86 EU + 7.7 EB + 2.16 EG    (4-8a) 
 
B = -5.17 EU + 20.25 EB + 15.08 EG   (4-8b) 
 
Backhaus (1991) claims these equations are borne out both by 
neurophysiological and behavioural evidence (see below for caveats). The two 
values A and B can be plotted in an orthogonal X-Y co-ordinate system, so that 
the axes correspond to the excitation values of the neurons A and B (Figure 
4.11). The co-ordinates of each coloured stimulus are simply determined by 
calculating photoreceptor excitation values according to Equations 4-2 to 4-4, 
then inserting the resulting values into Equations 4-8a and b. According to 
Backhaus (1991), the distance (colour contrast) between two colours in this 
colour opponent space is not Euclidian, so that it cannot be measured simply 
with a ruler. Rather, distances are determined using a city-block metric, also 
called Manhattan metric. This means that to calculate the distance between 
two points, the distances along axis A and axes B are simply added up – so 
distances are determined very much like in a modern city with a rectangular 
layout (hence the terms city-block, or Manhattan metric; Figure 4.11). Thus, 
the colour difference formula for two colour stimuli with co-ordinates A1, B1 and 
A2, B2, is:  
 
D =  A1 – A2  + B1 – B2 
 
This formula can be used to calculate the colour contrast an object makes with 
its backdrop, or to determine the bee-subjective colour differences between the 
flowers of two different species. The spectrum locus cannot be determined as 
easily as for the colour triangle. This is because the loci of colours (including 
those of monochromatic lights) in the COC space change with intensity. For 
this reason, it is useful to introduce a convention to normalise the intensity of 
monochromatic lights to the same value. Backhaus (1991) and Chittka (1992) 
have normalised the monochromatic lights of the spectrum locus to adaptation 
light intensity. It follows from Equations 4-2 and 4-3 that for the adaptation 
background, each photoreceptor contributes a relative quantum catch of 1. If 
intensity is calculated as the sum of the 3 photoreceptor quantum catches, 
then intensity is 3 for the background. Thus, for calculating the photoreceptor 
excitations for each monochromatic light, we adjust the intensity of each 
spectral light so that it produces a sum of photoreceptor quantum catches of 3. 
This is done following formulae 4-9a to c. These receptor quantum catch 
values need to be converted into relative photoreceptor voltage signals using 
Equation 4-4. The co-ordinates for each wavelength of the spectrum locus are 
calculated using Equations  8a and b. 
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Chapter 4 Advertisement in flowers 
 
 

 
PU =  3 * S(λ)U /  (S(λ)U + S(λ)B + S(λ)G)   (4-9a) 

 

PB =  3 * S(λ)B /  (S(λ)U + S(λ)B + S(λ)G)   (4-9b) 

 

PG =  3 * S(λ)G /  (S(λ)U + S(λ)B + S(λ)G)                (4-9c) 
 
where PU,B,G are the quantum fluxes in the UV, blue and green receptors, and 
S(λ) is the adapted spectral sensitivity of the photoreceptor at the wavelength 
in question. The adapted spectral sensitivity curve is calculated by multiplying 
the spectral sensivity curve with the range sensitivity factor as determined by 
Equation 4-2.  

The UV-green mixture line is determined by calculating mixtures of 
300nm and 550nm in several discrete (for example, 9) steps. The quantum 
catches for the UV, blue and green receptors for each mixed light are 
calculated as follows: to predict the UV receptor’s quantum catch for a mixture 
of one 10ths of 300nm and nine 10ths of 600nm, simply add one 10th of its 
quantum catch for 300nm, and nine 10ths of the quantum catch for 600nm. Do 
the same for the blue and green receptors, then calculate the co-ordinates of 
the mixture light in colour space according to Equation 4-6a and b). Then, 
procede to the next mixture ratio. Calculate receptor signals using Equation 4-
4, and colour loci according to  Equation 4-8a and b.  

The  COC  model  is  simple  and  therefore attractive. It is an 
ambitious attempt to link behavioural and neurobiological data to form a 
comprehensive model of colour vision in an insect. It is this model that 
Campenhausen, (1993) heralded as being more comprehensive than any 
model that had been designed for humans (see above). However,  the  
derivation  of  the  COC  model  still  involves  a number  of open  questions. 
First,  the behavioural colour discrimination data  used to  obtain  the model 
were obtained from only a very small section of  colour space in the blue-green 
area (Backhaus et al., 1987). Therefore, it is  inappropriate to conclude that  
the  same  colour  difference  formula  might  apply  in  any  other  area of 
colour space.  Second, the  evidence that the two types  of colour opponent 
neurons (and only these two types) demanded by the model actually exist in 
the honeybee brain has been overstated. Kien and Menzel, (1977) found only 
one type of colour opponent neuron frequently.  This  type  was  excited  by  
UV  light, and inhibited by blue and green light (UV+ B-G-). These cells differ 
widely  in  the  strengths  of inputs from the blue and  green receptors,  and  so  
Backhaus’  assumption  of  a single set of weighting  factors is a simplification. 
The mirror image type (UV- B+ G+) was  also  found, so there is evidence that 
the assumption of a UV  vs.  blue-green mechanism  in the COC model might 
have a physiological correlate.  However, the other  type of neuron  postulated  
by  the  model,  a  tonic  neuron  with excitatory input  from blue   receptors,  
and  inhibitory  input  from  UV  and  green  receptors   (UV- B+ G-), or  its  
mirror  image,  UV+  B-  G+,  were  never  described  in  
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