
A Simple Iterative Model Accurately Captures Complex
Trapline Formation by Bumblebees Across Spatial Scales
and Flower Arrangements
Andrew M. Reynolds1*, Mathieu Lihoreau2, Lars Chittka3

1 Rothamsted Research, Harpenden, Hertfordshire, United Kingdom, 2 School of Biological Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, New

South Wales, Australia, 3 Psychology Division, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom

Abstract

Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel
distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative
improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of
stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive
power for empirical data for which the model has not been specifically developed, and here the model is shown to be
consistent with observations from different research groups made at several spatial scales and using multiple
configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their
environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the
increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish
stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel
distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with
which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the
instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays,
bees’ visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of
flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and
refine our understanding about how small-brained insects develop a representation of space and use it to navigate in
complex and dynamic environments.
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Introduction

Bees, bats, hummingbirds, rodents and primates which exploit

patchily distributed foods that replenish over time often visit

resource locations in predictable sequences [1–12]. In pollinating

insects, such as bumblebees, these traplines are often the shortest

circuits to visit all the known flower locations exactly once before

returning to the nest and so are solutions of the well-known

travelling salesman problem (TSP) [13]. Just how these animals

solve this problem with relatively low computational power has

long been a mystery [14–16]. The TSP is, after all, one of the most

intensively studied problems in combinatorial optimization [13].

There are no efficient algorithms for even solving the problem

approximately (within a guaranteed constant factor from the

optimum) because the problem is NP-complete (nondeterministic

polynomial time complete) and it is believed that there is no

algorithm that can find a solution where the processing time

increases as a finite order polynomial in N [17]. The most direct

approach would be to try all of the permutations and then select

the shortest one, but this becomes impractical even for only 20

locations as the number of permutations is 20!. Nonetheless,

approximate solutions can be found using linear programming

methods, neural networks, simulated annealing and genetic

algorithms [17]. The best approximate algorithms can typically

find solutions within 1–2% of the optimum but these are unlikely

to be implemented by biological organisms because they are

computationally demanding [13].

Several algorithms have been proposed to explain how animals

might optimise multi-location routes [18]. Perhaps the simplest

candidate model of bumblebee trapline development is the

‘nearest neighbour’ or ‘greedy’ heuristic, in which a model bee

chooses the nearest unvisited flower as its next move until all

flowers have been visited. It has been suggested that this simple

heuristic explains the routing behaviour of some animals [14,19–

21] but it is incompatible with observations of bumblebees

foraging at various spatial scales [15,16]. No better is a simple

random ‘k-opt’ iterative improvement heuristic [22] in which a

model bee (1) tries to improve the route between known flowers by

randomly shuffling the order in which a number (k) of randomly

selected flowers are visited, and (2) the route change is kept if the

new route is shorter than the previous one (otherwise it is rejected).

This heuristic significantly over-predicts the number of foraging
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bouts executed before the first appearance of an optimal (shortest-

path length) foraging route and unlike bumblebees does not create

stable traplines [16]. Recently we proposed that bumblebees use a

simple learning heuristic (‘The Basic Traplining Heuristic Model’)

to develop optimal traplines between distant feeding locations in

the field. This heuristic is based on our general knowledge of bee

navigational strategies [23], including bees’ tendency to discover

flowers in relation to their distance to the nest [16], the fact that

they learn sequences of vector flights between familiar locations

using the visual context (landmarks and/or panoramas) [24–26],

and their ability to measure travel distances through the image

movement over their retina (optic flow) experienced during flight

[27,28]. In this heuristic, model bees try a limited number of

possible route iterations, so that route segments (between pairs of

flowers) that shorten the overall route are reinforced in memory,

while others are abandoned, allowing bees to develop an adaptive

(and occasionally optimal) ‘trapline’ whilst retaining some ability to

adjust their route in response to changes in the spatial

configuration of flowers [16]. This model predicts that bees: (1)

occasionally visit fewer than all flowers especially during early

bouts; (2) regularly revisit empty flowers during the same bout; (3)

decrease their frequency of returns to just-visited, empty flowers

with experience; (4) establish stable optimal routes in some spatial

configurations but not others; (5) can sequentially adjust their

routes to incorporate newly discovered flowers in an optimal way

when the number of locations is relatively small. Quantitative

evaluation of the simulated data with bees’ optimisation perfor-

mances at an array of five artificial flowers arranged in a regular

pentagon (50 m side length) set up in the field showed full

agreement (as quantified by p-values for the probability of the data

given the model) for the number of bouts: (1) to the first

appearance of an optimal sequence; (2) the number of bouts to the

stabilization of an optimal sequence into a trapline; (3) the number

of different routes experienced; (4) the net travel length per bout;

(5) the number of revisits per bout: and (6) the similarity indices

between successive bouts [16]. In accordance with empirical data

[16] the model also predicts correctly that bee flight paths are

constrained by previous experience and that bees cannot compute

entirely novel solutions quickly. Our simple model relies on

reactive navigation rules rather than a ‘‘cognitive map’’ and might

require relatively low cognitive demands. It may therefore provide

an important indication of how bumblebees encode and use spatial

information when developing traplines. Nonetheless, detailed

analyses of the model are necessary to refine our understanding

of this strategy and clarify whether similar learning heuristics apply

to bumblebees foraging at different spatial scales and configura-

tions.

In this paper we show that our model is consistent with all

published observations [14–16,29–32] made at small spatial

scales that have established how bumblebees optimize their

routes between fixed resources [15,29], re-optimize their routes

after identifying a new resource [31] and how and when bees

prioritize high-reward resources [32] in various floral arrays

(Fig. 1). These studies have been performed in flight rooms

where bees could potentially see all artificial flowers from any

vantage point. The dimension of these flight rooms varied. The

study of Saleh and Chittka [29] was carried out in an indoor

flight arena measuring 105 (L)675 (W)630 (H) cm. The studies

of Ohashi et al. [14] were carried out in an indoor flight cage

(78863306200 cm). The studies of Lihoreau et al. [15,16,31,32]

were carried out in a greenhouse (87067306200 cm). We begin

by showing that the model can account for the observed

increasing propensity of bees to find optimal routes with

increasing spatial scale and show that is predicts correctly the

formation of stable optimal traplines for some arrangements of

flowers but not others [16,32]. We then show that our model

predicts that bumblebee flight patterns made during the course

of a day (between 65 and 80 foraging bouts) between 10 or fewer

irregularly distributed flowers will often converge onto the

shortest possible path or find good approximate solutions of it.

This is an impressive feat because there are 10!~3628800
different ways of travelling between 10 flowers. We also show

that the model predicts that after locating more flowers than

necessary to fill their crop capacity (nectar stomach size),

bumblebees can develop highly effective traplines, by visiting

only a set of flowers with an appropriate spatial configuration.

Finally, we show that the bee searching behaviour is consistent

with their adopting an optimal searching strategy.

Methods

The basic traplining heuristic model
The basic model – an iterative improvement heuristic - is

described in Lihoreau et al. [16]. The heuristic mimics the

behaviour of a bumblebee collecting nectar in a stable array of

flowers and returns to its nest over multiple consecutive bouts. At

the end of each foraging bout, flowers replenish with a new load

of nectar. At each stage, a model bee chooses to move between

flowers according to six assumptions: (1) the bee can uniquely

identify each flower using information from path integration

and/or the visual context (landmarks, panoramas) [24,25]; (2) the

bee has a finite probability of using transition vectors joining each

pair of flowers; (3) the initial probability of using a vector depends

on the distance between the two flowers (in our simulations these

probabilities are inversely proportional to the squared distance

between flowers and are normalized with respect to all flowers);

(4) the bee computes the net length of the route travelled using

optic flow (odometer) [27,28], by summing the distances of all

vectors comprising the flower visit sequence; (5) having completed

a route passing through all the flowers at least once (and thus

filled their crop capacity), the bee compares the net length of the

Author Summary

Pollinating bees, along with bats, hummingbirds, rodents
and primates, typically develop circuits (traplines) to visit
multiple foraging sites in an efficient stable sequence. The
question of how animals encode and process spatial
information to develop these impressive foraging patterns
remains poorly understood. Previously we showed that an
iterative improvement heuristic model of bumblebee
traplining can replicate the establishment of stable routes
by bees between flowers distributed over several hectares.
Here we tested the model against a variety of datasets
with different configurations of flowers and found it to
give good agreements with all these observations. We
have thus shown how these complex dynamic routing
problems can be solved by small-brained bees using
simple learning heuristics and without acquiring a ‘map-
like’ memory. The proposed heuristic shows how bees
develop optimal routes simply by following multi-segment
journeys composed of learnt flight routines (local vectors),
each pointing towards target locations (flowers) and
coupled to a visual context (landmarks or panoramas).
Such a decentralized representation of space relying on
learnt sensorimotor routines is akin to ‘route-based’
navigation as described in desert ants, where spatial
information is thought to be processed by separate,
potentially modular, guidance systems.

Modelling Trapline Formation
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Figure 1. Schematics of the artificial flower arrays used in the experimental studies under investigation. a–c) Lihoreau et al.
[15,16,31,32], d) Saleh and Chittka [29] (upper panels) and the e) ‘independent’, f) ‘positive’ and g) ‘negative’ arrays of flower (N) used in the study of
Ohashi et al. [14] (lower panel). The position of the nests (N) is indicated. 1 m scale bars are shown. In the ‘independent’ array the flowers were
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current route to the net length of the shortest route experienced

so far that passes through all the flowers; (6) if the new route is no

longer, the probabilities of using the vectors forming this new

route in the next foraging bout are multiplied by a common

factor and then all probabilities are rescaled with respect to all

flowers so that they sum to unity. Repeating the shortest route

therefore reinforces it.

Quantifying model agreement with observations: p-
values

The model was used to predict the distributions of the number

of bouts before the first appearance of an optimal (shortest) route

(if found) and the number of bouts before the optimal routes

became established as the only foraging route stabilised. These

distributions were based on 1000 runs of the model. These

distributions were then used to calculate the probability of a real

bee doing at least as well given the model (i.e. the null hypothesis)

is correct, i.e., the numbers of bouts/routes were ordered and then

the ranking of the real bee observation was determined. This

probability is a p-value. A p-value of 0.3 means that the numbers

of bouts/routes for the real bee was equal to the 70th % quickest

result in the numerical simulations. The model can be rejected if

the p-value is lower than 0.05. Typically p-values are much larger

than this threshold.

Asymmetry index
Aside from comparisons with our own data [15,16,31,32] we

will also compare our model with the empirical study of Ohashi et

al. [18]. For each pair of flowers (i, j), Ohashi et al. [18] recorded

the numbers of transitions from flower i to flower j, and from

flower j to flower i made during 9–10 successive foraging trips.

These transition matrices were characterised by asymmetry indices

L~{2
P

P, where P is the binomial probability of the observed

departure from a 1:1 expectation of the observed number of

transitions, i.e. if there were N transitions between flowers i and j

with n transitions being from flower i to flower j then the associated

binomial probabilityP~ N!
(N{n)!n!

1
2

� �N
. P values with fewer than 6

observations were omitted. The asymmetry indices were then

standardized by dividing by the number of pairs tested, which

varied with foraging stage and among the bees. This standardi-

zation was not mentioned in the paper by Ohashi et al. [14] (K.

Ohashi, private communication).

Results

Motivation and spatial scale
Lihoreau et al. [32] reported on bee optimisation performances

in an array of five artificial flowers arranged in a regular pentagon

(5 m side length) in a flight room (Fig. 1a). All flowers had the

same reward value and their spatial arrangement was similar to

the one used in the field study of Lihoreau et al. [16]. However,

unlike at the field scale, at these scales the bees could potentially

detect all of the flowers visually from any location. Nonetheless,

stable optimal routes (visiting each flower once and returning to

the nest using the shortest possible path) only became established

after bees had made 34 or more foraging bouts. This is

significantly more than in the field experiment using a scaled-up

arrangement of flowers with side length 50 m where around 26

bouts were required for the establishment of the optimal route

[16]. This suggests that a bee’s ‘‘motivation’’ to optimise its route

increases with spatial scale because the costs of travelling

suboptimal routes are lower when flying a few metres than when

flying several hundred metres [16]. We tested whether this

difference in tendency to optimise can be captured by the model

by adjusting the common factor by which vectors are reinforced

each time a short route is found (see Methods).

Good model agreement with the data collected at the field-scale

was only obtained when the probability enhancement factor fell

between about 1.5 and 4 [16]. Smaller probability enhancement

factors, less than about 1.1, brought the model into good

agreement with the data collected in the flight room by Lihoreau

et al. [32] (Table 1). This suggests that the probability

enhancement factor in our model is scale-dependent and can be

associated with motivation to optimize a route. Similarly, good

model agreement with the data collected in the same flight room

with 4 flowers [31] and with 6 flowers that were between 1 and

10 m apart [32] and with data collected in a smaller flight arena

with 6 flowers less than 1.0 m apart [29] was only obtained with

probability enhancement factors less than 1.5 (flower arrange-

ments shown in Fig. 1b–d).

We then examined how a bee’s tendency to repeat visitation

sequences increases with experience using a similarity index (SI),

described in Saleh and Chittka [29], which quantifies the similarity

between pairs of flower visitation sequences. SI takes into account

the length of sequences and the order of visits to flowers. SI ranges

between 0 (completely different sequences, e.g. 123 vs 456) and 1

arranged so that bees can choose distance and turning independently; in the ‘positive’ flower array, proximity and directionality were positively
linked, so that the nearest neighbouring flower could be reached by straight-ahead movement; and in the ‘negative’ flower array, proximity and
directionality were negatively linked, so that choosing the nearest neighbour flower as the next flower to visit required bees to make turns.
doi:10.1371/journal.pcbi.1002938.g001

Table 1. Comparisons between empirical and simulation data for three traplining characteristics at a pentagonal arrangement of
flowers (Fig. 1a).

Diagnostic
Probability of the data given the
model with an enhancement factor = 2

Probability of the data given the model with an
enhancement factor = 1.1

No. bouts until first appearance of
an optimal route

0.32–0.85 0.20–0.76

No. of bouts until first appearance of 3
consecutive optimal routes (stability)

0.19–0.97 0.85–1.00

No. of distinct routes 0.00–0.16 (Reject) 0.40–1.00

The empirical data comes from [32] (Expts. 2 & 3, bouts 1–40, 10 bees tested, Fig. 1) and comparisons are quantified by p-values, which are the probabilities of the
empirical data given the model.
doi:10.1371/journal.pcbi.1002938.t001
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(identical sequences, e.g. 12345 vs 12345). The model was in

closest agreement with the observational data [29,32] (i.e. the p-

values were largest) when the probability enhancement factor was

about 1.1 (Fig. 2). For example, for the case of Lihoreau et al.

(Expt. 2, Bouts 1–40) [32], p-values ranged between 0.16 and 0.43

when the probability enhancement factor was 2.0 and ranged

between 0.43 and 0.62 when the probability enhancement factor

was 1.1

Stable optimal traplines cannot be established for all
spatial configurations of flowers

Ohashi et al. [14] reported on the ontogeny of foraging paths in

3 different spatial configurations of 10 flowers that were less than

1.0 m apart (Fig. 1e–g). In their ‘independent’ array, 10 flowers

were arranged in a triangular pattern so that bees can choose

distance and turning independently; in the ‘positive’ flower array,

proximity and directionality were positively linked, so that the

nearest neighbouring flower could be reached by straight-ahead

movement; and in the ‘negative’ flower array, proximity and

directionality were negatively linked, so that choosing the nearest

neighbour flower as the next flower to visit required bees to make

turns. Ohashi et al. [14] reported that bumblebees preferred to

choose short distances over straight flights and showed little

plasticity in this regard, and as a consequence are less able to

approximate the TSP solution in a ‘negative’ flower array

compared to other arrays. Ohashi et al. [14] reported that 3 out

of the 6 bees tested in the positive array established optimal

traplines, just 1 out of 5 bees tested in the independent array

established an optimal trapline and none of 5 bees tested in the

negative array established optimal traplines. Our model is

consistent with these observations. After 65 bouts, the model

predicts that about 80% of the bees will have established stable

optimal traplines in the positive array; 10% of the bees will have

established stable optimal traplines in the independent array; and

no (0 out of 100) bees will have established stable optimal traplines

in the negative array. The latter prediction arises because the

initial probability of using a vector depends on the distance

between the two flowers (in our simulations these probabilities are

inversely proportional to the squared distance between flowers). In

accordance with the observations of Ohashi et al. [14] our model

predicts that stable optimal traplines cannot be established for all

spatial configurations of rewarding flowers. This is true at the scale

of the experiments (probability enhancement factor 1.1) and at the

field scale (probability enhancement factor 1.5).

Ohashi et al. [14] reported that the asymmetry index increased

with foraging experienced and for this reason they reported on

median rather than mean values of the standardized asymmetry

index. The median standardized asymmetry indices for the

positive, independent and negative arrays were 5.4761.10

(mean6s.e.), 4.3760.37 and 4.5660.56. Comparable model

predictions (with overlapping ranges) are obtained when the

probability enhancement factor is less than about 1.5. Model

predictions for a probability enhancement factor of 1.5 are

5.6562.69, 4.8661.78 and 5.5862.22.

Finding solutions to the Travelling Salesman Problem
Having demonstrated good agreement between our model and

various datasets of the literature, we then used the model to predict

the optimization performance of bees when foraging on randomly

rather than regularly distributed flowers. The simulation data were

Figure 2. Predicted and measured similarity indices for consecutive sequences of floral positions visited by bees in a 5-flower array.
The similarity index quantifies the similarity between pairs of flower visitation sequences. They take into account the length of sequences and the
order of visits to flowers, and range between 0 (completely different sequences, e.g. 123 vs 456) and 1 (identical sequences, e.g. 12345 vs 12345).
Predictions are shown for probability enhancement factors of 2 (red circles) and 1.1 (blue circles) and for an individual real bee [32] (black circles). The
model with an enhancement factor of 1.1 does not lead to gradual increases of route similarity as observed in the real bee. The model with a
probability enhancement factor of 2 is seen to capture well the overall dynamics of how a bee’s tendency to repeat visitation sequences increases
with experience. However, the model does not fully capture the bees’ occasional tendency to depart completely from established routes and explore
entirely dissimilar routes in this experiment.
doi:10.1371/journal.pcbi.1002938.g002
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obtained for 100 different random arrangements of N flowers, and

for 100 bees per arrangement. The probability enhancement

factor is two, as this brought the model into good agreement with

the observations. The model predicts that the numbers of bees that

find the optimal path between N randomly distributed flowers

during the course of a day (65 foraging bouts) decreases as the

number of flowers increases but remains sufficient even for 10

flowers (Fig. 3a,b). Nonetheless, some of the random arrangements

of flowers form ‘negative’ arrays as proximity and directionality

were negatively linked and in these cases no model bees found an

optimal route. For other random arrangements of the flowers,

almost all of the models bees found the optimal route. The average

path length as a proportion of the minimum path length increases

as the number of flowers increases but is less than 1.25, the value

obtained using the nearest neighbour algorithm, when there are 10

or fewer flowers (Fig. 3c).

It is computationally prohibitive to test the optimality of routes

made between 20 or more flowers. Nonetheless, most (about

98.5%) of the shortest routes made between 20 randomly

distributed flowers that were found by the model bees during

the course of a day (65 foraging bouts) could be shortened by

simply switching the order in which two of the flowers were visited,

i.e. by changing the flower visitation sequence 5875431… to

5835471… by switching the order in which flowers 3 and 7 are

visited. The routes that could not be shortened in this way could

be the shortest of 21!~5:1x1019 possible routes between the

flowers. After 2 days of foraging (130 foraging bouts) without

overnight memory loss, about 96.5% of the shortest found routes

could be shortened by such pairwise switching of the visitation

sequences. Model bees that do not find optimal traplines gradually

reduce the number of distinct routes taken between the flowers,

but generally do not form stable non-optimal traplines during the

course of a day (Fig. 3d).

Bees foraging on several distant patches are predicted to

eventually minimize overall travel distances between patches but

not necessarily travel distances within patches. Most model bees

(with constant probability enhancement factors) foraging on 4

patches located at the corners of a square (Fig. 3e) did, for

example, follow optimal clockwise or anticlockwise routes when

flying between patches during the course of the day. Optimal

clockwise or anticlockwise routes were flown about 70% less

frequently within patches.

Developing efficient traplines by selecting a set of
flowers with an appropriate spatial configuration

The aforementioned results together with the observations of

Ohashi et al. [14] (3 different arrangements of 10 flowers in a

small flight cage) suggest that a bee’s ability to optimise its

foraging route may depend largely on how it selects a set of

flowers or patches of flowers to visit. If it has sufficient options, a

bee might select a set of flowers or patches for which the route

between them can be optimized. This tendency would be limited

by the number of located resources and possibly because

bumblebees avoid intensive overlap of their foraging areas with

competitors [33,34]. We used the model to predict the

optimization performance of bees when the crop capacity is

filled after visiting some but not all known flowers. When the crop

capacity is filled, a model bee returns directly to the nest. The

simulation data were obtained for 100 different random

arrangements of the 8 flowers, and for 100 bees per arrangement.

The probability enhancement factor was two. The model predicts

that a significant proportion ($20%) of bees can find the optimal

route between a few known randomly distributed flowers during

the course of a day (65 foraging bouts) (Fig. 4a). Irrespective of

whether or not the optimal route is found, the model bees do tend

to form stable traplines so that some flowers are repeatedly

revisited during the day whilst others are largely neglected

(Fig. 4b,c). In accordance with the observations of [29] [6 flowers

in a small flight cage], the non-optimal routes are predicted to be

dependent upon an individual’s foraging history.

Trade-off between travel distance and prioritization of
high-reward sites

Lihoreau et al. [32] demonstrated that traplining bees trade-off

between minimizing travel distance and prioritization of the most

rewarding locations. After the introduction of a highly rewarding

flower to the pentagon array, the bees re-adjusted their routes

visiting the most rewarding flower first provided that the

departure distance from the shortest route was sufficiently small

(18%). However, when routes optimizing the initial rate of

reward were much longer (42%), bees prioritized short travel

distances. This behaviour can be captured qualitatively by the

model by enhancing the initial value of the probability for flying

between the nest and the highly rewarding flower. If there are

more flowers than necessary to fill a bee’s crop capacity and if

flowers vary in their reward value, then the model bees tend to

establish stable optimal traplines at the field scale and the most

rewarding flowers are visited more frequently than are the least

rewarding flowers. The tendency to prioritise the most rewarding

flowers decreases as the number of flowers necessary to fill a bee’s

crop capacity increases, i.e. as the typical reward value decreases

(Fig. 5).

Optimal searching behaviours
Naı̈ve bees need to search for the flowers, and experienced bees

were found to search after removal of a found artificial flower [16].

Lihoreau et al. [16] were the first to record these searching flights

and this allows for the development of a model of bee searching

behaviour during trapline development. These searches comprise

loops centred on the location of a found flower or the location of a

missing flower [16]. The size of a typical loop tends to decrease

with experience (bout number) eventually becoming comparable

with the ‘learnt’ typical distance between flowers. The typical size

of loops made by experienced bees searching after removal of a

flower also appears to be comparable with the learnt distance

between flowers [16]. Here, using a simple mathematical model,

we show that a looping searching strategy is near optimal for the

location of flowers when the expected distance between flowers is

known (has been learnt from experience), and when the typical

loop size is comparable with that distance. Our finding suggests

that the naı̈ve bees gradually optimize their loop searching strategy

by utilizing information they gain about the distance between

flowers, and then this use optimal strategy when searching after

removal of a flower, i.e., when searching after a known food source

becomes depleted.

In the model of searching developed here, a bee travels out from

the origin of its search (the nest initially or the location of a

previously found or missing flower) along a randomly orientated

straight-line (the outward leg of a loop) whose length, l, is drawn

from an exponential distribution p lð Þ~le{ll where l{1 is the

average length of the outward leg of a loop. The bee then flies

continuously in that direction whilst constantly searching for the

flower. The search ends if the flower lies within a ‘direct

perception’ distance, r, of the bee. If the flower is not sighted,

the bee stops after traversing the distance, l, and returns to the

origin of its search by retracing its outward flight. It then randomly

chooses a new direction and a new distance before travelling out

Modelling Trapline Formation
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Figure 3. Predicted flight performance in the presence of 10 flowers that are randomly and uniformly distributed within a square
patch. a) Cumulative proportion of model bees with traplines of length L/Lmin is the length of the shortest possible routes between the flowers. b)
Predicted optimisation performance of bees in relation to the number of flowers the bees must visit to fill their crop. Proportion of model bees that
find solutions to the travelling salesman problem (N) and find good approximate solutions (i.e. have flight lengths that are no more than 10% longer
than the shortest possible flights) (#). c) The average value L/Lmin in relation to the number of flowers. d) Distribution of the numbers of distinct
routes taken during bouts 33–65 between 10 flowers. e) Schematic of flower array used to evaluate predicted optimization performance of bees
foraging for patchily distributed resources.
doi:10.1371/journal.pcbi.1002938.g003

Figure 4. Predicted flight performance in the presence of 8 known flowers that are randomly distributed within a square patch. a)
Predicted optimisation performance of bees in relation to the numbers of flowers, N, the bees must visit to fill their crop The figure shows the
proportion of model bees that find the shortest possible routes between N flowers and the nest during the course of a day (65 foraging bouts). b, c)
Predicted frequency of occurrence of making n visits to a flower during bouts 1–35 and bouts 35–65 when a bee must visit 4 flowers to fill their crop.
doi:10.1371/journal.pcbi.1002938.g004
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again. The search is centred on the origin because, initially at least,

that is the most likely location of the flower.

The number of loops, N, in a searching flight can be estimated

by simply noting that a search will end when the length of the

longest loops, lmax, become comparable with the distance from the

centre of the search to the flower, xF , i.e. by noting that

N
Ð?

lmax

p(l)dl&1 which dictates that a loop with length longer than

lmax occurs at most once in the search pattern [35]. This condition

gives N~exp lxFð Þ. It follows from this that the average length of

an entire search path, L~Nl{1, is given by L~exp lxFð Þl{1

and so is minimal when l{1~xF , i.e. when the average length of

the outward leg of a loop equals the expected distance to the

flower. This optimization is not specific to exponential loop-length

distributions and has been validated in numerical simulations (data

not shown). It can be understood intuitively. If loops tend to be

shorter than the distance between flowers then the search will be

very long because most loops will fall short of the nearest flower so

prolonging the search (sufficiently long loops will be rare). If loops

tend to be longer than the distance between flowers then the

search is unnecessarily long as the bee will frequently fly beyond

where a new or missing flower is expected to be. We could not

actually test this model in detail because of the small amount of

empirical data available.

Discussion

Previously we showed that a simple iterative improvement

heuristic model of bumblebee traplining can accurately replicate

the establishment of stable foraging routes by bees between five

flowers distributed over several hectares [16]. In this paper, we

have confronted this model to five other datasets from the

literature and demonstrated that it also captures the development

of traplines at smaller spatial scales in different arrangements of

flowers. We showed that the model predicts correctly the

formation of stable optimal traplines for some arrangements of

flowers but not others, and accounts for the observed increasing

propensity of bees to find optimal routes with increasing spatial

scale [16,32]. Bees foraging on several distant patches are

therefore expected to eventually minimize overall travel distances

between patches but not necessarily travel distances within

patches. The model can also be modified to account for the

observed trade-off between travel distance and prioritization of

high-reward sites [32].

The model predicts that bees can, during the course of a day

(ca. 65 foraging bouts), find solutions or good approximate

solutions to the TSP. These approximate solutions tend to have a

certain level of instability because bees never quite abandon

interfacing exploration with the exploitation of known resources in

a known order, so that an optimal route can be followed by a sub-

optimal route. The bumblebee algorithm as encoded by our model

also becomes impractical for 20 or more locations. However, it is

effective for up to about 10 locations, which in practice could

facilitate the linking up of flower patches or large plants (trees or

bushes) with an optimal or near optimal routes rather than

individual flowers as bumblebees typically visit 100’s or even

1000’s of individual flowers before returning to their nests [36].

The algorithm is less effective at linking up individual flowers

within a patch. The model also predicts that after locating multiple

flowers whose total nectar volume is in excess of their crop

capacity, bumblebees can develop highly effective traplines, by

visiting only a set of flowers with an appropriate spatial

configuration. This selection arises naturally within our model

without the need for additional modelling.

Despite a long history of research on bee learning and

navigation, most knowledge has been deduced from the behaviour

Figure 5. Predicted flight performance in the presence of 8 known flowers are that randomly distributed within a square patch. 2
flowers are co-located and are a proxy for single highly rewarding flower. Frequency of visiting the most rewarding flower in relation to the numbers
of flowers, N, the bees must visit to fill their crop (N). The line is added to guide the eye.
doi:10.1371/journal.pcbi.1002938.g005
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of foragers travelling between their nest and a single feeding

location [23]. Only recently, studies of bumblebees foraging in

arrays of artificial flowers fitted with automated tracking systems

have started to describe the learning mechanisms underpinning

complex route formation between multiple locations [14–16,29–

32]. The demonstration that all these observations can be

accurately replicated by a single learning heuristic model holds

considerable promises to further investigate these questions and fill

a major gap in cognitive ecology [37]. We also provided

theoretical evidence that the searching strategies employed by

bumblebees and reminiscent of those seen in desert ants and in

desert isopods [38,39] become optimized over time as the bees

gain knowledge about the spacing between flowers. They can be

contrasted with the ‘scale-free’ strategies adopted by honeybees

when searching for their hive or after the only known food

becomes depleted; situations lacking a characteristic spatial scale

[40,41]. Future developments of our modelling platform will allow

us to generate specific empirically testable predictions about how

different organisations of spatial memory might produce different

movement patterns and optimisation dynamics by bees in more

ecologically relevant situations, for instance in the presence of

competitors or in environments containing resources of different

nutritional values. In the future, by incorporating searching

behaviours and flight trajectories into the model, we will be able to

make even more robust and precise predictions about trapline

development.
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