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The great majority of plant species in the tropics require animals to achieve pol-

lination, but the exact role of floral signals in attraction of animal pollinators is

often debated. Many plants provide a floral reward to attract a guild of pollina-

tors, and it has been proposed that floral signals of non-rewarding species may

converge on those of rewarding species to exploit the relationship of the latter

with their pollinators. In the orchid family (Orchidaceae), pollination is almost

universally animal-mediated, but a third of species provide no floral reward,

which suggests that deceptive pollination mechanisms are prevalent. Here,

we examine floral colour and shape convergence in Neotropical plant communi-

ties, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum
ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae.

We show that the species from these two distantly related families are often

more similar in floral colour and shape than expected by chance and propose

that a system of multifarious floral mimicry—a form of Batesian mimicry

that involves multiple models and is more complex than a simple one model–

one mimic system—operates in these orchids. The same mimetic pollination

system has evolved at least 14 times within the species-rich Oncidiinae through-

out the Neotropics. These results help explain the extraordinary diversification of

Neotropical orchids and highlight the complexity of plant–animal interactions.

1. Introduction
Competition for pollinators in tropical plant communities is considerable as many

angiosperms require animal vectors for pollination [1,2]. Avariety of floral signals

are used to entice pollinating animals, with shape [3], colour [4–7] and scent [8]

all playing a role. Although generalist pollination systems are frequent on a global

scale [9], specialization of pollination systems is common in the tropics [10] and

may have been integral to angiosperm diversification [9]. Plants have achieved

this specialization through modification of floral signals and even the use of unu-

sual rewards, such as oils or resins [9,11]. Adaptation to a guild of pollinators that

share a functional role (e.g. pollination by birds [12]) is more widespread than

specialization to a single species [9]. Dependence on functionally similar pollina-

tors has driven convergent evolution of floral signals, whereby similar floral traits

have arisen in distantly related taxa [12], although some studies have questioned

the ‘pollination syndrome’ concept [13,14].
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Figure 1. Floral resemblance of Stigmaphyllon sp. (centre; Malpighiaceae) and Oncidiinae orchids Trichocentrum ascendens and Rossioglossum ampliatum (left and
right; Oncidiinae: Orchidaceae).
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Pollination of specialized plants is often pollinator limited

in tropical communities [15,16]. This is pronounced in mem-

bers of the orchid family (Orchidaceae), which possess highly

specialized pollination mechanisms [17,18]. Orchidaceae is

one of the largest families of angiosperms, comprising as

many as 25 000 species [17]. Approximately 8000–10 000 of

these species offer no floral reward, yet they rely on animal

pollination [18,19]. Some orchids use food-deception to attract

pollinators by imitating floral signals of rewarding plants

either directly (via Batesian mimicry [20] or convergence on

the floral signals of rewarding species) or indirectly (non-

model mimicry [17]). Batesian floral mimicry and convergence

occur when selection drives a non-rewarding mimic species to

resemble a rewarding floral model to attract the signal receiver

[6,21–23]. Non-model mimicry systems [17] do not require a

specific model species to be imitated, but instead more general

floral features of co-occurring plants are displayed by the non-

rewarding plant species. In this case, non-rewarding orchids

exploit the food-foraging behaviour or perceptual biases of

naive pollinators and, because they are not reliant on specific

model species, are more dependent upon the species richness

and abundance of the rewarding community [19,24,25].

We focus our study on the highly diverse orchid subtribe

Oncidiinae (tribe Cymbidieae). Widespread in tropical America,

they comprise over 1700 species in 60 genera [26–28]. The

majority of these species are non-rewarding and self-incompati-

ble, presumably attracting pollinators through some form of

deception. Some members of the Rodriguezia clade offer nectar

rewards [26] and �70 species of Oncidium produce oils that

bees harvest for food or nest construction [29]. There are reports

of oil production in other genera [30], but this may not be in suf-

ficient quantity to qualify as a reward [27,31]. ‘Classic’ Oncidium-

type flowers possess superficially similar floral colour and shape

to rewarding Malpighiaceae species (figure 1; [27,28,31–33]).

However, evidence for mimicry is anecdotal and floral colours

have only been assessed from the perception of humans, rather

than of hymenopteran pollinators. Floral scent is considered to

be of limited importance for food-deceptive species [34,35].

First, to determine the degree of convergence in floral colour

signals, we investigated the floral colour of self-incompatible,

rewardless Oncidiinae that appear to mimic the floral sig-

nals of rewarding Malpighiaceae [27,28,31]. The putative

Malpighiaceae model species used were Byrsonima crassifolia,
a Neotropical tree ranging from southern Mexico to Paraguay

[36–38], and Stigmaphyllon lindenianum, a liana distributed

from southern Mexico to northern Argentina [38,39]. Both

species have yellow, typically malpighiaceous flowers [36,40]

and produce abundant quantities of oil through epithelial

elaiophores on sepalar glands [29]. Second, we examined the

evolutionary history of floral colour, based on an appro-

priate model of insect colour vision [41] and a new molecular

phylogenetic tree for Neotropical orchids. Finally, we assessed

the convergence of floral shape within Oncidiinae, using

eigenshape morphometric analyses [42].
2. Material and methods
(a) Floral reflectance
To determine the similarity in floral colour of Malpighiaceae and

Oncidiinae species, we collected floral reflectance data for 27

orchid species, four Malpighiaceae and 210 other angiosperm

species across 23 sites in Costa Rica (see the electronic supple-

mentary material, table S1). We also collected floral reflectance

data from fresh material for a further 63 Oncidiinae and three

Malpighiaceae from various sources (see the electronic sup-

plementary material, table S6). Floral reflectance was measured

using a miniature Ocean Optics spectrophotometer (Ocean

Optics, Ostfildern, Germany), SPECTRAWIN v. 5.0 basic software

(Avantes Inc., Broomfield, CO, USA), alongside a D2H light

source (World Precision Instruments Ltd, Stevenage, UK), which

provided UV (300 nm) to red (700 nm) wavelength light—the

entire sensitive range of insect spectral perception [43]. Three

flowers were collected from all plant species flowering at an acces-

sible height (less than 3 m), within each 500 m2 study site. Three

floral reflectance measurements were taken from each differently

coloured part of each flower. Measurements were taken from the

labellum (a modified petal) of all orchid species.

To ascertain how floral colours are perceived by pollinators,

particularly hymenopterans, reflectance profiles were converted

into colour loci within a colour space using a model of bee colour

vision that is applicable to a large number of hymenopteran species

[41]. This includes tropical stingless bees, for which UV, blue and

green receptors have similar spectral sensitivities across a wide

taxonomic range [41,43–45]. Within this colour space, distances

between points are indicative of an insect’s ability to discriminate

between colours. Under natural field conditions, bees of multiple

species reliably distinguish differences in colour of more than 0.1
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hexagon units, the value below which pollinator constancy does

not differ from chance [46,47]. Several alternative models of

insect colour vision are available [48,49], the advantages and dis-

advantages of which have been reviewed elsewhere [49,50]. We

used the colour hexagon model [41], because it accurately predicts

colour discrimination by multiple different bee species [5,41,51,52].

Reflectance data from individual sites were pooled into three

habitat types (see the electronic supplementary material, table

S2), and two analyses were performed for each habitat. First, we

evaluated whether each orchid species occupied a distinct portion

of colour space, that is, whether non-model deception can be

ruled out. The median Euclidean distance between the orchid

and the rest of the community was compared with the median

of all other pair-wise distances, and 1000 bootstrap replicates

used to measure significance. Second, we tested whether potential

mimics and Malpighiaceae, as a group, occupied a distinct portion

of colour space from other species. We assessed whether the mean

distance between species occurring within the UV–green portion

of colour space was smaller than the mean distance between

species in other portions of the colour hexagon; significance was

assessed using t-tests.

(b) Phylogenetic inference
A matrix of nuclear internal transcribed spacer DNA sequences for

representatives of 211 species of Oncidiinae (plus three outgroup

taxa) was assembled from GenBank data and other sequences

provided by Norris H. Williams (see the electronic supplementary

material, table S3). We used Bayesian phylogenetic reconstruction

in MRBAYES v. 3.1.2, and the GTR þ I þ G model of evolution was

applied as determined using MRMODELTEST v. 2.2. The Markov

chain Monte Carlo chain was run for 20 million generations,

with a 2 million generation burn-in. The floral colour (yellow/

non-yellow) of each species was mapped onto the phylogenetic

tree using linear parsimony in MESQUITE v. 2.73.

(c) Floral morphology
To determine the role of floral shape in this pollination system, two

datasets (described below) were analysed using eigenshape morpho-

metrics [42]. Open curve outlines of each individual’s floral shape

were captured from digitized images using Media Cybernetics’

IMAGE-PRO PLUS v. 6.2 (2006) software and each dataset was analysed

separately using STANDARD EIGENSHAPE v. 2.6 (http://www.morpho-

tools.net/). Briefly, coordinates of semi-landmarks interpolated

along sample outlines were converted into w shape functions.

Singular value decomposition was performed on the covariance

matrix of w functions to define eigenshape axes describing shape

variation in the sample [42]. This method removes the effect of

size, permits analysis of open curves anchored by landmarks

and is appropriate for structures to which multiple homologous

landmarks are difficult to assign, as for floral shapes [42,53].

The first dataset was used to determine whether the labellum

shape of Oncidiinae species was more similar to that of Malpigh-

iaceae than the corolla shape of other angiosperm species found

within the 23 study sites. For plants identified to genus or

family level in the field, candidate species were determined

from Neotropikey (http://www.kew.org/science/tropamerica/

neotropikey.htm) and Gargiullo et al. [38], matching region, habi-

tat type and elevation of the study site concerned. Images were

sourced for 167 species from 46 families (see the electronic sup-

plementary material, table S4). Following eigenshape analysis,

Euclidean distances to the nearest Malpighiaceae species, derived

from axes describing 90 per cent of the shape variation, were calcu-

lated for each species. Significance of differences between two

groups (‘yellow-flowered Oncidiinae’ and ‘all other angiosperms’)

were assessed using t-tests.

To examine floral convergence across the whole Oncidiinae

subtribe, 111 images for yellow-flowered species and 158 for
non-yellow-flowered species were included in a second dataset

(see the electronic supplementary material, table S5). This was com-

posed of photographs of 97 specimens from Lankester Botanical

Garden database (www.epidendra.org) and 172 detailed illus-

trations from ‘The pictorial encyclopedia of Oncidium’ [54].

Following eigenshape analysis, we applied canonical variates

analysis (CVA) to axes describing 90 per cent of the shape variation,

using the XLSTAT package for Microsoft-Excel, to determine

whether yellow-flowered Oncidiinae could be discriminated from

other Oncidiinae by flower shape alone (i.e. to what extent are

yellow flowers convergent in shape). In most cases, one flower

was analysed per species due to the difficulty in obtaining suitable

images, but two flowers were analysed for 32 species with multi-

ple images available (see the electronic supplementary material,

table S5). Limited availability of images prevented comprehensive

assessment of intraspecific shape variation.

(d) Additional field observations
A series of field observations were performed to record other

aspects of potential mimicry of B. crassifolia (Malpighiaceae) by

Trichocentrum ascendens (Oncidiinae). Bees visiting B. crassifolia
were caught and examined for the presence of orchid pollinia.

Pollinator visitation was also recorded in natural populations

of T. ascendens. Numbers of individuals, flowers and reproduc-

tive success of T. ascendens were surveyed in one population

with and one without the model B. crassifolia (see the electronic

supplementary material experimental procedures for locations,

study design and observation periods).
3. Results
(a) Floral colour
We assessed similarity in floral colour of plants for three habitats

from the perspective of insect pollinators using models of colour

vision applicable to trichromatic hymenopteran pollinators

[41,43]. Within this colour space, yellow-flowered orchids and

the two yellow-flowered Malpighiaceae species (B. crassifolia
and S. lindenianum) are all bee-UV-green, that is, they combine

long-wavelength reflectance, perceived as yellow by human

observers, with UV reflectance [41,55]. The average difference

between these yellow orchids and their potential models was

0.04 units, less than the difference detectable by hymenopteran

pollinators [41]. This suggests that their floral colours would

be perceived as highly similar by these pollinators. Bee-UV-

green Oncidiinae or Malpighiaceae were present in 14 sites. In

three sites (17, 19 and 21), these analyses showed that two

yellow-flowered Oncidiinae species (T. ascendens and Oncidium
nebulosum) match the bee-UV-green colour signal of Malpighia-

ceae species and occupy a significantly distinct area of colour

space from the other species in their communities (figure 2;

p , 0.001; electronic supplementary material, table S2). Further-

more, orchids within these communities that did not possess

bee-UV-green labella were not distinct from local flowering

species within the colour hexagon (figure 2). In site seven,

sample size was insufficient for a comparison to be made,

and in two instances (sites 22 and 23) a second bee-UV-green

orchid species was present. In the remaining sites, other

bee-UV-green angiosperm species were present.

When bee-UV-green orchids and Malpighiaceae species

were combined, their floral colour was significantly distinct

from the rest of the community in two habitat types (moist

forest habitat: t ¼ 226.03, d.f. ¼ 91.625, p , 0.0001; distur-

bed habitats: t ¼ 29.0534, d.f. ¼ 35.57, p , 0.0001). Floral

http://www.morpho-tools.net/
http://www.morpho-tools.net/
http://www.morpho-tools.net/
http://www.kew.org/science/tropamerica/neotropikey.htm
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http://www.epidendra.org
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Figure 2. Bee-UV-green Oncidiinae (open circles) and Malpighiaceae species
(open triangles) occupy a different portion of bee colour space when com-
pared with the majority of other local flowering species (blue diamonds).
Non-bee-UV-green orchids are represented by open squares. Colour loci are
calculated according to the hexagon colour model of hymenopteran vision
[41]. The inset shows the colour hexagon divided into sections that represent
colour names as termed with respect to insect vision (B, blue; G, green; UV,
ultraviolet), indicating relative contributions from individual colour receptor
types of hymenoptera.
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Figure 3. Convergence on a shared area in bee colour space has evolved and
been lost multiple times within Oncidiinae. Reproductive strategy, bee-UV-
green coloured flowers (black branches) or non-bee-UV-green flowers
(white branches), mapped onto the phylogenetic tree of the Oncidiinae.
The majority of nodes are well supported (see the electronic supplementary
material for details) and agree well with results of Neubig et al. [28], who
included more taxa and a larger number of DNA regions. Letters in brackets
beside the clade name represent the 10 major clades in Oncidiinae [27].
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reflectance profiles of the additional orchid samples (i.e. those

not observed in the field sites; electronic supplementary

material, table S6) confirmed that 70 per cent of the additio-

nal orchids and all three Malpighiaceae species are bee-

UV-green for insect colour vision and appear yellow to

humans. Building on this correlation, we determined (from

field observations and the scientific literature) that at least

500 of the 1700 Oncidiinae orchids possess bee-UV-green

flowers. Mapping this trait onto a molecular phylogenetic

tree of 211 members of the subtribe (see the electronic sup-

plementary material, table S3) demonstrated that this

pollination syndrome has evolved independently in at least

14 genera: Cyrtochilum, Erycina, Gomesa, Lockhartia, Miltonia,

Oncidium, Pachyphyllum, Psychopsis, Otoglossum, Rhynchostele,

Rossioglossum, Trichocentrum, Tolumnia and Zelenkoa (figure 3;

electronic supplementary material, figure S1).

(b) Floral morphology
We examined whether Oncidiinae displaying the yellow colour

within these sites had converged on similar floral shapes to

those of Malpighiaceae species and whether this was signifi-

cantly different from the general shape of the rewarding

community. Along the first two axes (36% of total shape vari-

ation), the shape of Oncidiinae labella is generally more

similar to the floral shapes of Malpighiaceae species than to

the majority of sympatrically flowering angiosperms, with the

exception of O. nebulosum, a clear outlier (leftmost red point

in figure 4a) with respect to other yellow-flowered Oncidiinae.

Based on the first 19 eigenshape axes (90% of shape variation),

we tested whether the floral shape of yellow Oncidiinae is

more similar to Malpighiaceae than other members of the com-

munity. The mean distance of yellow-flowered Oncidiinae to

the nearest Malpighiaceae species is less than the mean
distance of all other angiosperms to the nearest Malpighiaceae

species, but the difference is marginally non-significant

(t ¼ 1.563, d.f.¼ 6.647, p ¼ 0.082). However, when the outlier,

O. nebulosum, is excluded this difference is highly significant

(t ¼ 3.583, d.f. ¼ 6.354, p ¼ 0.005).

The second morphometric analyses assessed the simi-

larity of 269 Oncidiinae to determine whether floral shape

convergence matched that of colour. Although the mor-

phologies of yellow and non-yellow-flowered orchids

overlap along the first three axes (38% of the total variation),
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there is a tendency for unrelated yellow-flowered species to

occupy similar areas of morphospace—the same is true for

non-yellow-flowered species (figure 4b). Discriminant ana-

lyses (CVA) of the first 31 axes (90% of shape variation)

indicate that the morphological information captured by the

labellum outline is sufficient to distinguish ‘yellow’ from

non-yellow-flowered species in 78 per cent of cases.
(c) Shared pollinators and reproductive success
Field observations of hymenopteran visitors to both

B. crassifolia and T. ascendens were of limited success. Several

bees were captured on B. crassifolia, primarily of the genera

Centris, Trigona and Paratetrapedia, but none was carrying

orchid pollinia. No pollinators visited T. ascendens during

the observation periods. As such, confirmation of a shared

pollinator was not possible through our observations;

however, it has been documented by other studies [29,37,

40,56,57]. Our comparative study of two populations of

T. ascendens demonstrated that female reproductive success

in this species was roughly doubled in the presence of

B. crassifolia (20.4% compared with 8.2%). In the sympatric

population, 113 T. ascendens flowers were recorded from 31

plants, compared with approximately 320 000 B. crassifolia
flowers from a single plant. The second population had an

equally low number of T. ascendens flowers (98 on 23 plants).
4. Discussion
(a) Convergent evolution of floral colour
We show that certain Oncidiinae orchids that conform to

the ‘classic’ Oncidium-flower type, and B. crassifolia and

S. lindenianum (Malpighiaceae), produce unique floral signals

that are so similar that they are unlikely to be distinguished

by their hymenopteran pollinators. For two Oncidiinae species,

T. ascendens and O. nebulosum, this shared signal is significantly

distinct from the floral reflectance profiles of other neighbour-

ing plant species in bee colour space and is greater than

expected by chance. This implies that a visiting bee cannot

differentiate between flowers of the two groups with respect

to flower colour, which is consistent with both convergent evol-

ution of floral colour to attract similar pollinators and mimicry

of oil-bearing Malpighiaceae flowers [27,31–33].

Analysis of other bee-UV-green species within the subtribe

revealed that a substantial proportion of species examined

possess yellow/bee-UV-green flowers, and that this trait has

evolved multiple times, at least 14, within the Oncidiinae

(figure 3). Ancestral state reconstruction also indicates that

the bee-UV-green flower colour may have been the ancestral

condition for the subtribe. Under this scenario, the resemblance

to Malpighiaceae has been repeatedly lost and then secondarily

regained in numerous lineages. These data provide substantial

evidence that not only is convergence on Malpighiaceae flower

colour a common feature in Neotropical orchids, but also that it

is apparently an evolutionarily labile trait. It seems clear that

these species gain a substantial benefit from this convergent

coloration; however, it is less clear whether the benefit comes

from maintaining reproductive success while conserving

resources or as a means to improve fitness through higher

outcrossing rates [58].

(b) Convergence of floral shape
Morphometric analyses demonstrate that convergence in

floral shape is also present in Oncidiinae. The extent to

which pollinators perceive differences in the shape of the

flowers is not accounted for by this study, but, when assessed

at the subtribe level, bee-UV-green coloration is shown to be a

predictor of shape in 78 per cent of Oncidiinae species, and

bee-UV-green orchids are generally more similar to Malpigh-

iaceae than are other plants. The available data did not

allow estimation of intra-individual or intra-species shape

variation, but the large number of species included does pro-

vide an indication that there is a degree of shape convergence

across the subtribe. Given the floral plasticity observed within

Oncidiinae [27,28,31], it is unsurprising that there is consider-

ably more overlap in shape than in colour. It has been

suggested that variation in floral shape is of benefit in decep-

tive pollination systems, because it prevents pollinators from

learning to avoid unrewarding flowers [59]. This could

explain why variation in floral morphology has been found

to be higher in deceptive species compared with those pro-

viding a reward [35]. However, alteration of floral shape

has also been shown to reduce pollinator visitation in decep-

tive species [22,60], and there is probably a dynamic balance

operating between these two opposing phenomena.
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Within the context of pollinator deception by orchids,

several studies have shown the importance of morphologi-

cal traits in pollination success [61]. Studies of floral shape

have mostly focused on sexually deceptive orchids ([62] and

references therein). Empirical evidence for the importance of

floral shape in insect pollinator attraction is available for

many diverse angiosperm and insect taxa [3,62,63]. More

specifically, floral shape discrimination by bee pollinators,

according to both innate and learned shape preferences, has

been demonstrated through behavioural experiments [63].

Thus, given the strong and direct impact of pollinator attraction

and pollinator fecundity on plant reproductive success, there

is clearly potential for such preferences to result in selective

pressures influencing floral morphology.
cB
280:20130960
(c) Floral mimicry
Convergence on a similar floral phenotype to attract pollinators

is clearly only of benefit if the same pollinators are actively

being attracted. In three sites, the floral colour of bee-UV-

green orchids and Malpighiaceae is distinct from the rest of

the community, an indication that neither group exploits

non-model mimicry of the general community. Attempts to

observe a shared pollinator between Oncidiinae orchids and

Malpighiaceae were unsuccessful, highlighting the difficulties

in identifying pollinators of deceptive orchids in tropical

environments. With such low levels of reproductive success,

a longer observation time frame than that of the current

study would be needed to confirm shared pollination. Despite

this, documentation of a shared pollinator has been recor-

ded between bee-UV-green Oncidiinae and Malpighiaceae.

Solitary oil-collecting bees in the family Apidae are known to

be important pollinators of many plant species in the Neotro-

pics, including B. crassifolia and other Malpighiaceae, as well

as a number of Oncidiinae orchids, including T. ascendens
[29,37,40,56,57]. In some sites, additional bee-UV-green species

were present, namely Vochysia sp. (Vochysiaceae) and Acemella
sp. (Asteraceae). These species do not appear to exploit

Malpighiaceae pollinators as neither of these genera are pri-

marily pollinated by oil-collecting bees, although occasional

visits from Centris species have been documented [64,65].

The shared colour signal, convergence in floral shape and

potentially shared suite of pollinators raise the possibility

that Batesian mimicry may operate between bee-UV-green

Oncidiinae mimics and Malpighiaceae models, but other

criteria would need to be fulfilled to confirm this [19,23].

The convergence observed has to be driven by the sensory

and cognitive abilities of pollinators [24,66]. It is hard to

disentangle Batesian floral mimicry from other forms of con-

vergent evolution as the shared environmental conditions

and pollinators of both model and mimic would exert similar

selective pressure on many floral features [22,67,68]. For con-

vergence on floral colour and shape to be considered a

Batesian mimicry system, there needs to be evidence of

improved reproductive success in the presence of a model

species. Our limited data suggest that this is the case. However,

given that pollination success fluctuates between populations

for a variety of reasons (e.g. pollinator density [16] or the

magnet-species effect [7,69]), further studies need to be carried

out to investigate whether there is a general pattern of

increased fitness in the presence of a rewarding model.

Carmona-Dı́az & Garcı́a-Franco [32] reported higher levels of

reproductive success in the Mexican species of Trichocentrum
luridum (published as Trichocentrum cosymbephorum) when

occurring in sites where Malpighia glabra (Malpighiaceae)

was abundant. This phenomenon was also observed in the

deceptive orchid Disa nivea in South Africa and its Scrophular-

iaceae nectar-producing model, Zaluzianskya microsiphon [21].

Given the generally low reproductive success of deceptive tro-

pical orchids [15,18], this can be difficult to ascertain.

We also assessed whether there was lower frequency of

Oncidiinae orchid flowers relative to those of Malpighiaceae,

as this is often considered to be an additional criterion for

Batesian mimicry. Across two sites, fewer than 250 T. ascendens
flowers were observed, whereas 150 000–878 000 flowers have

been counted on single B. crassifolia individuals, indicating

that Malpighiaceae flowers are found in greater abundance

compared with those of Oncidiinae orchids.

To confirm whether this interaction constitutes strict

Batesian mimicry, additional observations of pollination of

both plants by the same pollinators would be necessary, as

well as extensive testing of increased reproductive success in

the presence of the model. Behavioural choice experiments,

e.g. [70,71], demonstrating that the pollinator actively confu-

ses the putative model and mimics, both initially and after

non-rewarding visits, would further support this hypothesis.

(d) Non-model deception
Orchids that do not possess a bee-UV-green labellum

(e.g. Oncidium cariniferum, Oncidium dichromaticum (rose/

white forms) and Cuitlauzina convallarioides) are not distinct

from other co-flowering species in any sites. They may exploit

mistakes by generalist pollinators, those straying from nearby

rewarding species, their perceptual biases or the naivety of

early/late season pollinators with innate preferences [72]. As

opposed to mimicking a particular model species, this could

occur via non-model deception [73] or the magnet-species

effect [7,69]. The majority of Oncidiinae exhibiting non-

model deception were bee-blue-green in colour (figure 2),

which was shown to be the most common flower colour in a

study of 593 plant species [55]. Species of this colour made

up 33 per cent of the total number of species co-flowering in

the 23 study sites. These figures are consistent with non-

model deception, as the most beneficial flower colours to

imitate would be the most common colours that foraging

hymenoptera encounter. Surveys of deceitful orchids in the

Mediterranean and Caribbean have concluded that this form

of deception is more common than specifically mimicking a

single model species [19]. Alternatively, some bee-blue-green

Oncidiinae may be mimics of other malpig colour forms, as

is thought to be the case between T. luridum and M. glabra [32].
5. Conclusions
We suggest that the bee-UV-green deception characterized

here is more complex than a single pair-wise mimetic system.

Oncidiinae, many of which possess the mimetic phenotype,

are exclusively Neotropical [26–28,33]. The majority of

Malpighiaceae occur in the Neotropics [74] and floral conserva-

tism is extremely high within the family—more than 1000

Neotropical species share a floral morphology that attracts

oil-collecting bees [40,74]. Byrsonima crassifolia, in particular,

is dominant throughout the dry forests, savannahs and

pastures of Costa Rica [36,75]. The principal pollinators

of both groups (oil-gathering bees) are also Neotropical
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[33]. This suggests that T. ascendens, O. nebulosum and other

mimicking Oncidiinae may not target a single model species;

rather, they may attract pollinators from a suite of highly

similar Malpighiaceae.

A minority of Oncidiinae produce oil-rewards and studies

comparing the oil composition of certain Malpighiaceae and

oil-secreting Oncidiinae revealed that there is a high degree of

biochemical convergence between the oils [30]. This presents

the possibility that non-rewarding species may attract polli-

nators from both Malpighiaceae and other orchids, thus

adding to the complexity of the system. Selection on floral

traits may still be driven by the need to attract specific polli-

nators away from specific rewarding species, but the actual

pollinators attracted and the species they are attracted away
from may vary in time and space, in a manner akin to the

geographical mosaic of coevolution [76]. This could be con-

sidered as a multifarious form of Batesian mimicry and

may help prevent extinction of these orchids if the mimic’s

model or pollinators become locally extinct.

These results advance our understanding of reproductive

systems underpinning the success of one of the most species-

diverse Neotropical groups of plants, namely, the orchids.
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34. Jersáková J, Johnson SD, Jürgens A. 2009 Deceptive
behavior in plants. II. Food deception by plants:
from generalized systems to specialized floral
mimicry. In Plant – environment interactions: from
sensory plant biology to active behaviour (ed.
F Baluska), pp. 223 – 246. Berlin, Germany: Springer.

35. Ackerman J, Cuevas A, Hof D. 2011 Are deception-
pollinated species more variable than those offering
a reward? Plant Syst. Evol. 293, 91 – 99. (doi:10.
1007/s00606-011-0430-6)

36. Janzen DH. 1983 Costa Rican natural history.
Chicago, IL: The University of Chicago Press.

37. Vinson SB, Williams HJ, Frankie GW, Shrum G. 1997
Floral lipid chemistry of Byrsonima crassifolia
(Malpighiaceae) and a use of floral lipids by Centris
bees (Hymenoptera: Apidae). Biotropica 29, 76 – 83.
(doi:10.1111/j.1744-7429.1997.tb00008.x)

38. Gargiullo MB, Magnuson B, Kimball L. 2008 A field
guide to plants of Costa Rica. Oxford, UK: Oxford
University Press.

39. Anderson C. 1997 Monograph of Stigmaphyllon
(Malpighiaceae). Syst. Bot. 51, 1 – 313. (doi:10.
2307/25027873)

40. Anderson WR. 1979 Floral conservatism in
Neotropical Malpighiaceae. Biotropica 11, 219 – 223.
(doi:10.2307/2388042)

41. Chittka L, Beier W, Hertel H, Steinmann E, Menzel
R. 1992 Opponent colour coding is a universal
strategy to evaluate photoreceptor inputs in
hymenoptera. J. Comp. Physiol. A 170, 545 – 563.
(doi:10.1007/BF00199332)

42. MacLeod N. 1999 Generalizing and extending the
eigenshape method of shape space visualization
and analysis. Paleobiology 25, 107 – 138.

43. Menzel R, Backhaus W. 1990 Color vision in insects.
In Vision and visual dysfunction (ed. P Gouras),
pp. 262 – 293. Houndsmills, UK: MacMillan.

44. Chittka L. 1996 Does bee color vision predate the
evolution of flower colour? Naturwissenschaften 83,
136 – 138. (doi:10.1007/BF01142181)

45. Peitsch D, Fietz A, Hertel H, Souza J, Ventura DF,
Menzel R. 1992 The spectral input systems of
hymenopteran insects and their receptor-based
colour vision. J. Comp. Physiol. A 170, 23 – 40.
(doi:10.1007/BF00190398)

46. Chittka L, Spaethe J, Schmidt A, Hickelsberger A.
2001 Adaptation, constraint, and chance in the
evolution of flower color and pollinator color vision.
In Cognitive ecology of pollination (eds L Chittka,
JD Thomson), pp. 106 – 126. Cambridge, UK:
Cambridge University Press.

47. Chittka L, Vorobyev M, Shmida A, Menzel R. 1993
Bee colour vision: the optimal system for the
discrimination of flower colours with three spectral
photoreceptor types? In Sensory systems of
arthropods (eds K Wiese, FG Gribakin, AV Popov,
G Renninger), pp. 211 – 218. Basel, Switzerland:
Birkhäuser.
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