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ReviewAre Bigger Brains Better?
Lars Chittka1 and Jeremy Niven2

Attempts to relate brain size to behaviour and cognition
have rarely integrated information from insects with that
from vertebrates. Many insects, however, demonstrate
that highly differentiated motor repertoires, extensive
social structures and cognition are possible with very small
brains, emphasising that we need to understand the neural
circuits, not just the size of brain regions, which underlie
these feats. Neural network analyses show that cognitive
features found in insects, such as numerosity, attention
and categorisation-like processes, may require only very
limited neuron numbers. Thus, brain size may have less of
a relationship with behavioural repertoire and cognitive
capacity than generally assumed, prompting the question
of what large brains are for. Larger brains are, at least
partly, a consequence of larger neurons that are necessary
in large animals due to basic biophysical constraints. They
also contain greater replication of neuronal circuits, adding
precision to sensory processes, detail to perception, more
parallel processing and enlarged storage capacity. Yet,
these advantages are unlikely to produce the qualitative
shifts in behaviour that are often assumed to accompany
increased brain size. Instead, modularity and interconnec-
tivity may be more important.

‘‘It is certain that there may be extraordinary activity with
an extremely small absolute mass of nervous matter;
thus the wonderfully diversified instincts, mental powers,
and affections of ants are notorious, yet their cerebral
ganglia are not so large as the quarter of a small pin’s
head. Under this point of view, the brain of an ant is
one of the most marvellous atoms of matter in the world,
perhaps more so than the brain of man.’’

Charles Darwin 1871 [1].

Introduction
In computer technology, no one would seriously suggest
that a bigger computer is automatically a better computer.
Konrad Zuse’s 1940s Z3 computer measured about 2 x 2 x
0.5 m and weighed a ton, but could perform only basic arith-
metic operations [2]. In terms of processing power it might
easily be out-competed by any of today’s programmable
pocket calculators. It is the technology within which matters,
not the size. The same principle applies to brains. This was
recognised early in invertebrate neuroscience: in 1850, Dujar-
din [3] hypothesised that the ‘mushroom bodies’ — distinctly
shaped, dorsal brain areas in arthropods (Figure 1) — must
be the ‘organs of intelligence’, in part because these areas
are relatively enlarged in the social insects. In 1929,
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Pandazis [4] considered that the biggest mushroom bodies
are actually found in horseshoe crabs, despite these animals’
low level of ‘spiritual life’. He concluded, however, that size
doesn’t matter: what distinguishes the insect mushroom
bodies from those of Limulus is that only the former contain
cells with extensive dendritic ramifications and connections
to all major centres of the brain, as required for a centre of
higher-order information processing [4].

Just as in computer hardware, variation in brain size
(volume or mass) across animals is extreme: a whale’s brain
can weigh up to 9 kg (with over 200 billion neurons), and
human brains vary between 1250 and 1450 g (with an esti-
mated neuron number of 85 billion neurons) [5,6]. A honey-
bee’s (Apis mellifera) brain has a volume of w1 mm3 and
contains fewer than a million neurons [7,8] (Figure 1). The
best single predictor of brain size is body mass [6,9,10]
(Figure 2), but whether brain size is an equally good predictor
of behavioural repertoire and cognitive capacity is controver-
sial. There are dozens of published correlations between
various derivatives of brain size (or sizes of certain parts of
the brain) and various indicators of ‘intelligence’, cognitive
capacity, behavioural repertoire, innovativeness and social
systems [11–15]. However, there are also numerous funda-
mental complications with such correlations, which are in
part conceptual (for example, correlations never prove
causality) [12] and in part arise from rigorous empirical work
showing that in many cases such correlations are absent or
at least not straightforward [9,12,16]. Perhaps one of the
biggest obstacles to correlating brain size with behavioural
ability arises when one considers the insects, especially the
social ones. Darwin recognised this (see verbatim quote
above) and compared bees’ skills at ‘imitation’ and ‘under-
standing’ with those of primates [17].

This might seem overly generous, but nevertheless we
shouldn’t be dismissive of insect’s often impressive abilities
just because they have small brains. As an example of the
many tautologies characteristic of the field, Pearce [18]
argued that learning speed cannot be used as a measure
of intelligence — because the honeybee’s speed at colour
learning is not just superior to human infants, but to all verte-
brates that have been studied. There may be good reasons
to be uncomfortable with equating learning speed with intel-
ligence, but that large-brained mammals don’t top the chart
should not be one of them. Bees’ orientation abilities, for
example, have to be tailored to a lifestyle of central place
foraging, where individuals fan out from the nest over
areas measuring several square kilometres to search for
flowers; within these areas they can memorise the locations
and reward profitabilities of multiple feeders [19], linking
them in repeatable stable orders [20,21], memorising which
feeder is rewarding at what time of day [22,23], using spatial
position as a contextual cue to specific sensory-motor
contingencies [24], learning landmark sequences and
linking vector instructions to landmarks [25,26]. Foraging
from flowers requires the successful identification and
classification of the sensory signals that identify the most
rewarding targets, and indeed in this context bees display
several cognitive abilities previously attributed exclusively
to ‘higher’ vertebrates, including, for example, simple forms
of rule learning and categorisation [7,27].
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In some insects, social structures are in part based on
individual recognition of nestmates [28,29], and recent
studies indicate surprising social learning abilities [17], for
example mate-choice copying in the fruit fly Drosophila
melanogaster [30]. No-one familiar with the repertoire of
‘instinctive’ behaviour patterns of ants and bees would ques-
tion that it is hard to find parallels in the vertebrate world —
consider nest architecture, symbolic communication, nest
climate control, large repertoires of chemical communication
signals, complex strategies of consensus building, and
unique behavioural adaptations, such as slave-making, agri-
culture and well-coordinated territorial wars [31]. These
observations raise two major questions: How do insects
generate such diversity and flexibility of behaviour with so
few neurons? If so much can be achieved with relatively little
neuronal hardware, what advantages are obtained with
bigger brains?
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Figure 1. Frontal view of a honeybee worker’s brain.

The optic lobes contain w216,000 cells each; the lamina (LA), medulla
(ME) and lobula (LO) contain a variety of low-level feature detectors,
such as colour opponent neurons, motion detectors, edge detectors,
and polarisation sensitive neurons. They send projections to the proto-
cerebrum. The mushroom bodies (MB; w170,000 cells each) are the
primary sites of learning and memory; its calices (Ca) contain segre-
gated regions for olfaction, vision and mechanoreception. The a and
b lobes are the mushroom bodies’ output regions. The remainder of
the protocerebrum contains w19,000 neurons, some of which project
to pre-motor centres. The protocerebrum also contains the central
body (CB), plus neurosecretory cells. The deutocerebrum contains
about 2500 motor neurons and, in the antennal lobes (AL), about
4500 neurons subdivided into w160 glomeruli. Some 60,000 odorant
receptor cells are distributed along the antenna. These belong to
several different types, each responsive to a different set of chemicals.
Axons from like receptors project to one or a few glomeruli (shown in
a ‘telephone dial’ arrangement inside the antennal lobes). Axonal
projections (shown in orange in the right AL) extend from the antennal
lobe to higher processing centres, such as the mushroom bodies (MB).
The suboesophagal ganglion (SOG) contains VUMmx1, a ‘value system’
neuron with wide ramifications throughout the olfactory system (shown
in red); it represents the sucrose reward pathway for olfactory learning.
Figure modified after [7]; cell numbers from [8].
Brain Size and Sensory Systems
While some increases in brain size will affect cognitive
capacity, many increases in certain brain areas — especially
those involved in sensory and motor processing — produce
only quantitative improvements: more detail, finer resolution,
higher sensitivity, greater precision — in other words, more
of the same. Consider the visual system. The compound
eye of the fruit fly D. melanogaster has 700 functional units,
the ommatidia [32]. Within insects, larger species typically
have larger eyes with higher spatial resolution; a large drag-
onfly can have as many as 30,000 ommatidia [33]. However,
the human fovea (a tiny section of less than 1% of the retina)
alone contains 60,000 cone photoreceptors [32]. The com-
plete human retina can resolve w400,000 ‘pixels’, three
orders of magnitude greater than the fruit fly [34].

Crucially, if the added resolution and number of ‘pixels’ is
to be of behavioural relevance, it needs to be processed — in
other words, the neural machinery downstream of the photo-
receptors needs to expand with the number of receptor
inputs from the retina. Insects and vertebrates have conver-
gently arrived at similar solutions to process information
within and beyond the visual periphery — retinotopic neural
maps, consisting of local neuronal circuits arranged in
‘cartridges’ or columns that are repeated hundreds or many
thousands of times over, depending on the number of inputs
from the retina [32,34,35]. These repetitive circuits contain
a variety of feature detectors, such as colour opponent
neurons, and brightness, edge and motion detectors [36–38],
which will have to increase in number (although not always
linearly and not in the same proportions) with the number
of ‘pixels’ analysed. The primary visual cortex in mammals,
largely engaged in low-level visual feature extraction, thus
increases drastically with eye size — in mice, for example,
the area is 4.5 mm2, in macaques 1200 mm2 and in humans
3000 mm2 [39] — without necessarily increasing the diversity
of ways in which information is processed. The receptive
fields of neurons in central neuropiles within the insect visual
system, such as the lobula, also contain neurons with recep-
tive field properties that closely resemble those of complex
and hypercomplex cells within the first visual cortical area
of vertebrates [36,37].

In addition to the increased spatial detail in larger eyes,
there are also important differences in processing speed.
Larger fly species possess larger photoreceptors with
greater numbers of inputs (microvilli) and faster membranes
that support higher rates of information processing than
the smaller photoreceptors from their smaller counterparts
[40]. Indeed, large insect photoreceptors can respond to
frequencies far beyond the typical range of mammalian
photoreceptors [32,40]. For the higher frequency informa-
tion obtained by larger photoreceptors to influence behav-
iour, neurons at each processing stage between sensory
receptors and motor neurons must be capable of transmit-
ting and processing higher frequency information. These
neurons require dendrites and axons with increased axon
diameters and synapses capable of supporting higher
rates of vesicle release [40,41] — again, a reverberation of
size differences from the sensory periphery through to
several subsequent stages of information processing.
Increases in the size and number of photoreceptors improve
temporal and spatial resolution and, in turn, allow for
more detailed images that can be updated more rapidly
only if the eyes are supported by suitable neural circuitry
to evaluate the added detail. Storing more detailed images
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in memory will again require more neural substrate — but
there is no a priori reason to assume that any of this added
detail comes with any novel or more advanced forms of
information processing.

The principle of repetitive, modular organisation occurs in
several areas of the brain, not just those engaged in vision. In
another remarkable case of convergent evolution between
insects and vertebrates, the peripheral processing of olfac-
tory information follows similar principles across these taxa
[42–44]. Typically, in both vertebrates and insects there are
approximately as many receptor cell types as there are
olfactory receptor genes. Axons from like receptor cells —
those that express the same receptor protein and therefore
bind the same odorants — project to one or a few glomeruli
(Figure 1), globular, anatomically distinct subunits within the
antennal lobe (in insects) or the olfactory bulb (in mammals).
Individual chemicals reliably activate sets of identified
glomeruli [42–44]. Neurons innervating these dense regions
of neuropile sum up the inputs from the same chemorecep-
tors, increasing the signal-to-noise ratio and overall sensi-
tivity, and thus facilitating reliable odorant detection. In
insects as well as mammals, glomeruli coding for similar
substances are located close together, while those that
code for distinct scents are spatially segregated — gener-
ating a neural ‘odour map’ [42–44].

As in the peripheral visual system, the vertebrate periph-
eral olfactory systems contain greater numbers of neurons
and olfactory processing centres than those of insects. The
common fruit fly has 43 glomeruli within an antennal lobe
whilst honeybees have w160 [7,45]. Humans have w350
glomeruli in each half of the olfactory bulb, and mice have
w1000 [44,46]. Thus, although insects have fewer glomeruli
and presumably, therefore, have a reduced odour space in
comparison to many vertebrates, differences in peripheral
circuits are quantitative rather than differing fundamentally
in the diversity of types of neuronal computation performed.

The motif of scaling of sensory function (and accessory
structures) with body size is likely to be repeated in other
sensory modalities. Larger animals have larger surface areas
whose somatotopic mapping will (all else being equal) require
larger corresponding brain areas [10], although, in insects,
somatosensory maps occur in the periphery: in the desert
locust, Schistocerca gregaria, the projections of leg extero-
ceptors are organised in a somatotopic map within the
thoracic ganglia of the ventral nerve cord [47]. Although this
mapping is reminiscent of the somatotopic mapping of body
surface within the somatosensory cortex of vertebrates,
inputs to the map from the body surface are sparser. How-
ever, maps for individual limbs remain separate in the locust,
rather than being coalesced into a single map in the brain [47].

In conclusion, larger animals possess larger sense organs,
which in turn facilitate a more detailed mapping of the world
around the animal, provided these sense organs are accom-
panied by central neural circuits that process the peripheral
information. Larger numbers of neurons may increase redun-
dancy, thereby facilitating greater functional diversification
of neurons. Increases in the number and size of neurons
increase the total energy consumption and reduce the
energy efficiency of information processing [41]. Larger
neurons are less efficient than smaller neurons irrespective
of the rate at which they are transmitting information [41].
Thus, there are severe penalties for excess capacity that
promote the reduction of neural structures to a functional
minimum. Increases in the number or size of neurons in
one region of a sensory system must affect processing in
higher-order processing centres and influence behaviour
if they are to be maintained during evolution. By default,
however, there is no reason to assume that improvements
in the quantity of sensory processing necessarily result in
higher ‘intelligence’. Another crucial point is that sensory
structures and the absolute number of receptors and subse-
quent neurons determine the quality of a sensory system.
Thus, although comparative studies almost invariably use
relative brain volume, it is primarily the absolute, not relative
number of neurons, their size, connectivity and the available
energy that affect information processing within the nervous
system.

Behavioural Repertoires and Scaling in the Motor System
Before we turn to cognitive abilities (which are often difficult
to compare between species), we briefly inspect motor reper-
toires. As Changizi [48] puts it, a ‘‘system. is more complex
if it can do more kinds of things’’. Hence it is interesting
to compare the numbers of distinct, recognisable motor
routines in insects and other animals — the types of behav-
iour an ethologist might record in an ethogram. In Changizi’s
compilation of data on behavioural repertoire size across
several dozen species across the animal kingdom [48], the
number of different behaviours in various insect species
ranged from 15 to 42; amongst mammals, North American
moose were listed with 22, De Brazza monkeys with 44 and
bottlenose dolphins 123.

We suspected that social insects might have especially
rich repertoires; the honeybee, for example, builds hexagonal
honeycombs, manipulates powdery substances (pollen) to
glue them onto special places on its body, has a variety of
repetitive motor patterns (‘dances’) to communicate the loca-
tion of food, can manipulate and sting opponents while
avoiding being stung, cleans the nest of debris, warms the
brood by shivering, etc. Our literature survey found 59 distinct
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Figure 2. Body mass is a predictor of brain mass in animals.

The absolute brain mass of insects is considerably smaller than that of
vertebrates. Data from representative vertebrates are shown in black,
insects in red. Data for vertebrates and ants from [18,93]. Because the
mass of the honeybee brain was not available, it is estimated here from
volume [7]. (Data for the locust: J.E.N., unpublished.)



Current Biology Vol 19 No 21
R998
Box 1

Behavioural repertoire of the honeybee worker.

An overview of distinct and (at least in part) hard-wired behaviour patterns that excludes simple motor patterns, such as locomotion, or

various types of inactivity.

1. Aggressive flight: irritated bees fly at intruder with distinct pitch, preceding stinging [22].

2. Alarm fanning: bee stands with abdomen raised, pheromone is released, sting extended; wings whirred [22].

3. Antennation: mutual antennal contact between workers without food transfer, e.g. to assert hive membership [129].

4. Attend dance: following dancing bee to obtain information about target location [129].

5. Attend queen: being part of the queen’s ‘entourage’, at times licking or antennating her [129].

6. Biting an intruder: intruders are sometimes not stung but bitten [130].

7. Beg food: antennating another worker’s head to solicit food [129].

8. Brief piping: a signal by dance followers inducing termination of dance [131].

9. Brood incubation: pressing body against brood cell and heating, using thoracic muscles [132].

10. Build comb: shaping of newly secreted wax into cells; worker, male and queen larvae require different cell sizes, thus different motor

routines are needed for construction [129].

11. Buzz run: in bee swarm cluster, a specific mode of running through the cluster to signal and induce the swarm departure [133].

12. Cap brood: sealing cell with larva about to pupate [129].

13. Cell cleaning: removal of debris from empty honeycomb cells [134].

14. Chew at pollen on worker: chewing at pollen in another bee’s pollen baskets [129].

15. Chew on hive: using mandibles to chew on walls surrounding combs [129].

16. Colony fission: large number of workers leaves old hive with old queen to relocate into new home. Process and its preparation

involves multiple stereotyped individual behaviours [134].

17. Corpse removal: removal of dead bees from the hive [135].

18. Dorsoventral abdominal vibration: standing bee vibrates abdomen up and down, often while holding on to another worker, in prep-

aration for greater activity levels [129].

19. Egg laying: laying unfertilised egg into brood cell [134].

20. Expulsion of drones: at end of summer, drones are bitten and dragged out of the hive by workers, sometimes also stung [136].

21. Extend mouthparts: extending proboscis to ripen a small drop of nectar [129].

22. Fan wings: ventilation of hive by fanning the wings [129].

23. Feed larva: inserting head into larval cell to provide food [137].

24. Feed queen/worker: regurgitating drop of nectar which receiver imbibes [129].

25. Get fed: extending proboscis between mandibles of other worker to receive nectar [129].

26. Get groomed: Standing with extended wings to be cleaned by mandibles of other bee [129].

27. Groom self: cleaning self with mouthparts or legs [129].

28. Groom worker: cleaning hive mate with mandibles [129].

29. Guarding: at hive entrance, inspect landing individuals and attack possible intruders [130].

30. Inspect brood cell: inserting head into larval cell to inspect a larva [129].

31. Inspect potential nest sites: probing cavities for suitability [137].

32. Lateral shake (‘cleaning dance’): standing worker shakes her body from side to side; this often results in grooming by another bee

[129].

33. Mouth wax — capped cells: worker walks over capped brood, or capped food reserves, touching the wax with rapid mandibular

movements [129].

34. Nectar foraging: imbibing nectar from flowers [22].

35. Nectar storing: in-hive worker receives food from forager and deposits it in nectar cell [134].

36. Orientation flights: flights around hive to learn its landmark surroundings [138].

37. Packing pollen: tight packing of pollen into special pollen cells [137].

38. Piping in swarms: occurs in the preparation of lift-off to a new hive location [139].

39. Pollen foraging: requires the collection of powdery pollen from flowers, grooming it off body surface and packaging into specialised

hairy structures on legs (pollen baskets) [22].

40. Preventing queen fights: when new queens are raised, workers use multiple tactics to keep them apart [137].

41. Resin foraging: collecting resin from trees and transporting it in ‘pollen baskets’ to the hive, to be used as ‘glue’ [22].

42. Resin work in hive: sealing holes and cracks in hive [22].

43. Robbing other hives: the intrusion into other beehives to steal nectar [136].

44. Round dance: motor routine indicating to others that there is food in vicinity of hive [22].

45. Scouting for food: search for suitable flower patches to recruit others to exploit these [134].

46. Searching for nest sites: bees of a swarm search the environment specifically to assess potential nesting sites [134].

47. Sickle dance: occurs at the transition between round dance and waggle dance [22].

48. ‘Sterzeln’: raising abdomen, release attractive pheromone, and fan wings [22].

49. Stinging: attacking and stinging an animal that is perceived as an intruder [136].

50. Streaker guidance: informed scouts guide swarm to new nesting site by performing conspicuous flights at top of swarm [140].
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51. Swarm cluster formation: after colony fission, a swarm settles for a temporary bivouac, for example on tree, to search for new

home [134].

52. Tremble dance: peculiar ‘twitching dance’; signalling function controversial [141].

53. Turn-back-and-look behaviour: stereotypic flight behaviour to memorise appearance of new food source or hive entrance [142].

54. Uncap brood: using mandibles to remove capping material from brood cell [129].

55. Unload pollen: worker scrapes pollen off legs, and into a storage cell [129].

56. Waggle dance: figure-eight shaped repetitive run, indicating location of food source [22].

57. Water collection: bees seek out freshwater to imbibe and bring back to the hive [22].

58. Water cooling: to prevent overheating, water spread over comb; fanning for evaporation [22].

59. Worker policing: removing eggs that have been laid by other workers [134].
behaviour types (Box 1). The million-fold increase in a large
mammal’s brain relative to an insect’s does, therefore, allow
these mammals to do more ‘kinds of things’ — about two to
three times as many, according to this survey. This is hardly
the kind of difference between insects and mammals that
might be expected, given the enormous differences in neuron
numbers. There are obvious complications with such etho-
grams — behaviour can be classified at many different hierar-
chical levels (for example, ‘leg extension’, ‘escape response’
and ‘brood care’ are not equivalent behavioural classifica-
tions) — but the behavioural repertoire sizes above were
collated by almost as many researchers as there were
species, hence a bias favouring insects is unlikely.

One might also argue here that meaningful comparisons
of brain size and behavioural ability are only possible
between closely related species; this is true if one wishes
to trace evolutionary adaptations to particular lifestyles and
identify potentially homologous behaviours, but in a broader
framework any animal, irrespective of body size, should
be under pressure to minimise the amount of energy it
expends on nervous tissue [41]. So if it is possible to
generate a large behavioural repertoire with an insect brain,
then why can’t the motor centres in brains of larger animals
be similarly small, given that brain tissue is extremely costly
to maintain [49]?

The observation from sensory systems that some compo-
nents of bigger brains might add relatively little in terms
of number of types or diversity of neuronal operations is
repeated in the motor system. For example, homologous
neurons in the sympathetic nervous system have less exten-
sive dendritic arbours and receive fewer synaptic inputs in
smaller mammals than in their larger counterparts [50]. On
average, larger animals will need bigger muscles, and thus
possibly greater numbers of motor neurons and axons with
larger diameters to cover longer distances in the nervous
system. There is, of course, evidence that increased preci-
sion in motor skills is correlated with increases in the corre-
sponding motor cortex area’s size [51]. Beyond that, there is
little clear evidence that the insect motor system has a funda-
mentally simpler architecture than that of large-brained
mammals. Locusta migratoria has 296 muscles [52] —
more than rodents and almost as many as the 316 present
in primates [53] (Figure 3). Insects often outperform verte-
brates in terms of the speed of movements, though many
of these movements are ballistic and are controlled, at least
partly, by cuticular mechanisms [54,55]. Insects can produce
extended behavioural sequences, such as the waggle
dance of bees [22]. Just as in vertebrates, these behavioural
sequences can be reduced to a coordinated series of pre-
cisely timed muscle contractions [56]. The architecture of
the motor system is similar in insects and vertebrates [57];
both include descending pathways that control the activity
of central pattern generators for the generation of rhythmic
motor patterns that can be modified by sensory feedback
[58]. Both also have local reflexes, triggered by sensory
inputs, which can be modified by ongoing behaviours.

The most basic behaviour generated by the motor systems
of both vertebrates and invertebrates is the local reflex [56].
Many neurons identified in the vertebrate spinal cord for the
generation of limb reflexes have analogues in the insect
ventral nerve cord. For example, proprioceptive afferents
monitoring limb movements make direct excitatory synaptic
connections to the motor neurons generating those move-
ments and to local inhibitory interneurons (1a interneurons
in cats, midline spikers in locusts) [59,60]. Thus, although
the spinal cord of large vertebrates contains many times
more neurons than an insect ventral nerve cord, the circuits
generating local reflexes are similar.

Although many motor neurons and muscles may be active
in a particular behaviour, relatively few neurons may be
necessary to recruit them in a specific order. For example,
the neural circuits that generate the flight motor pattern in
desert locusts include 72 motor neurons innervating 34
muscles [60]. In comparison, the flight central pattern gener-
ator consists of just three neurons, though additional inter-
neurons and sensory neurons are involved in controlling
wing movements and adjusting them to prevailing environ-
mental conditions. Relatively few interneurons may be
necessary to produce novel behaviours using existing inter-
neurons, motor neurons and muscles. For example, few
additional interneurons may be necessary to recruit compo-
nents of existing motor circuits for limb control to generate
the movements necessary for mate attraction in male grass-
hoppers [61]. Thus, novel behaviours could arise by small
numbers of neurons using the basic architecture of motor
neurons and muscles but recruiting them in a different
order.

Motor neurons in vertebrates are sites of convergence,
ensuring their activation occurs only under concerted firing
of large numbers of pre-synaptic neurons. In the insects,
fewer pre-synaptic neurons, many of which are non-spiking
(‘analogue’), activate motor neurons [60]. Muscles in insects
are also innervated by fewer motor neurons than in verte-
brates — typically, tens to hundreds of motor neurons
innervate a vertebrate limb muscle [62,63], whereas even
highly innervated muscles in insects have fewer than fifteen
[64,65]. The increased number of motor neurons innervating
muscles in vertebrates might produce increased precision of
their movements relative to those of insects, but experi-
mental evidence is absent. However, comparison between
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vertebrate muscles suggests that the number of muscle
fibres innervated by a single motor neuron is reduced and
the number of motor neurons increased in muscles requiring
more precise control [66]. Differences in the precision of
movements between insects and vertebrates may arise
from differing numbers of motor neurons, but this may also
be a consequence of the biomechanics of the insect exoskel-
eton and the degrees of freedom of limb joints.

In conclusion, it is clear that the motor systems of insects
are not necessarily inferior to those of mammals in ways
that differences in brain size might suggest, with many size
differences in motor control centres just related to the
requirements of controlling bigger muscles. The differences
in behavioural repertoire size between insects and large-
brained vertebrates [48] are much less pronounced than
one might expect from differences in brain size.

Cognition with Miniature Brains
While few would contend that insects can produce a large
variety of behaviour routines with relatively small nervous
systems, there is still a prevailing view that this is all there
is — that insect behaviour is governed exclusively by such
hard-wired routines, each triggered by a specific configura-
tion of sensory input. Daniel Dennett, for example, points
out the ‘mindless mechanicity’ of the digger wasp Sphex ich-
neumoneus that, by artificially disrupting its offspring provi-
sioning procedure, can be tricked into performing the same
complex routine over and over, even when this has become
entirely meaningless [67]. While this is an intuitively
appealing example to contrast the seemingly automatic
behaviour of a small brained animal with that of humans, it
creates a somewhat misleading image of insects as fully
pre-programmed reflex machines. There has now been
a century of work on insect learning behaviour. Much of the
early work on insect learning focussed on simple associative
processes, such as the memory for visual patterns, colours
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Figure 3. Insects and mammals possess similar numbers of muscles
irrespective of body mass.

The number of muscles in mammals varies from 159 (opossum) to 322
(weasel). The migratory locust (Locusta migratoria) possesses 296
muscles. Data from [52,53].
and places [68], and attempts to ascribe true cognitive
abilities to insects were initially viewed with suspicion.

These doubts arose in part because some cognitive feats
attributed to insects were clearly more a question of whether
definitions of these abilities were sufficiently permissive to
include insect behaviour, or whether experimental proce-
dures were indeed comparable to those used on vertebrates.
The last 15 years, however, have generated a wealth of liter-
ature from multiple independent laboratories on cognitive
function in the insects, so that the existence of such abilities
is no longer controversial. This includes work on attention-
like processes in fruit flies and honeybees [69,70], categori-
zation of visual stimuli (for example, symmetrical versus
asymmetrical ones) by honeybees [7,71], contextual learning
in various species of insects (for example, where a spatial
position determines whether visual pattern A or B is correct)
[24], sequence learning [20,25], various types of social
learning in bees, crickets and flies [17,30], interval timing in
bumblebees, where subjects must predict when a certain
event will occur based on previous experience [72], associa-
tive recall, where a floral scent previously experienced by
a honeybee in a certain place will trigger the memory for
that place if the scent is experienced in a different location
[73], and numerosity, where insects respond, for example,
to the number of landmarks passed en route to a goal [74]
(Box 2).

One particularly impressive ability displayed by honey-
bees is the learning of sameness–difference rules [27], where
subjects are trained in a so-called delayed-matching-to-
sample task. When learning the concept of sameness,
honeybees are first shown a sample visual pattern A, then
given a choice between A and B, where A is associated
with a reward (Figure 4). Thus, bees need to memorise the
first pattern and match one of the following pair to it. More-
over, bees can eventually learn a more general rule to
‘choose the same ones’ with entirely different sets of stimuli
(for example, pattern C followed by C and D), even if they
have not see these stimuli before. Perhaps even more
impressively, they transfer the ‘sameness rule’ to visual
stimuli even if it was entrained using olfactory stimuli. And
finally, honeybees can learn the inverse concept: ‘choose
the different one’, so subjects learnt to always choose the
pattern that was not the sample — the ‘odd one’ [27]. While
the mechanism by which bees solve this problem is not
yet understood, these experiments and bees’ performance
are comparable to those performed on vertebrates [18],
although some aspects of sameness/difference concepts
might be considered uniquely human [75].

Although these feats are impressive, we should ask
ourselves whether we are only surprised by them because
we expect cognitive capacity to decrease with brain size,
and a brain whose volume measures less than a millionth
of a human’s might appear unlikely to perform any complex
operations at all. However, Srinivasan [76] has made the
convincing point that rule learning, concept formation and
categorisation might indeed be adaptive strategies because
of, rather than despite, the miniaturisation of the insect
brain. Thus, combining various objects to a single concept
or category may be a strategy to economise on memory —
memorising all relevant patterns by a common feature, rather
than each of them individually. Perhaps wielding Occam’s
razor too extensively, Horridge [77] claimed that bees might
actually extract only low-level cues — such as edge orienta-
tion, contour length or spectral content — from visual
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Box 2

Learning processes in insects.

This is an overview only; there is no intention of completeness of phenomena, species, explanations or references — for each process we

have chosen only one representative source and readers are encouraged to check the references in these papers. Note also that some of the

phenomena are related or overlapping, for example the sameness/difference concept learning experiments were performed using a delayed

matching-to-sample paradigm. Not included are basic, non-associative forms of learning (such as sensitization and habituation), or various

forms of simple associative learning (such as excitatory and inhibitory conditioning, avoidance learning and so on), which are probably found

in most animals. US – unconditioned stimulus.

Associative recall: Here, the triggering of route memory by exposure to a scent formerly paired with the target of the route; honeybees [73].

Attention: An ‘inner eye’ allowing the nervous system to ‘focus’ on limited aspects of incoming information; flies [69], honeybees [70].

Binding: The ‘tying together’ of features analysed separately in the visual system into a coherent image; bumblebees [78], honeybees [79].

Blocking: After stimulus A has been associated with a US, presenting a compound AB with US may not lead to conditioning of B; honeybees

[68].

Category learning: Learning to identify different items as members of a class, for example ‘plants’, ‘chairs’, ‘dogs’; honeybees [71].

Concept of symmetry: Learning that any symmetrical (or asymmetrical) target is a member of a category; honeybees [7].

Concept of sameness/difference: Learning a rule to ‘always choose the same one’ or ‘always choose the odd one’; honeybees [27].

Context learning: Learning the appropriate response to a stimulus not via the stimulus itself, but by the context in which it occurs;

cockroaches [119], fruit flies [91], honeybees [7].

Delayed matching to sample: Keeping a stimulus in working memory and match one from a set of options later; honeybees [27].

Generalisation: The tendency to respond similarly to stimuli that are similar to one that has previously been associated with a US;

bumblebees [143], fruit flies [91], honeybees [68].

Interval timing: Learning to predict the timing of a future event from past experience with intervals between events; bumblebees [72].

Latent learning: Learning without rewards, for example in spatial exploration; ants [144], honeybees [68].

Motor learning: Learning movement patterns, as for example in flower handling techniques and wax comb construction in honeybees;

bumblebees [108], butterflies [145], fruit flies [121].

Numerosity: Responding to the number of items in a display, not to size or other low-level cues; honeybees [74], beetles [146].

Negative patterning discrimination: Learning that two stimuli (A and B) are reinforced but the compound (A plus B) is not; honeybees [7].

Observational conditioning: A form of second order conditioning where one of the conditioned stimuli is the appearance of a conspecific

animal; bumblebees [17].

Overshadowing: The inhibition of associating stimulus A with a US in the presence of another stimulus B; honeybees [68].

Overtraining reversal effect: If subjects are trained beyond saturation performance, they are more ready to reverse-learn; honeybees [68].

Pain relief learning: Learning to identify stimuli associated with the relief from pain as rewarding; fruit flies [147].

Peak shift: A bias away from an unrewarded option, arising from differential conditioning; bumblebees [148], honeybees [149].

Reversal learning: Learning that a previously correct option is now incorrect and vice versa; bumblebees [108], honeybees [68];

cockroaches [150].

Second order conditioning: Associating stimulus A with a US; if A is subsequently paired with new stimulus B, B will also be learnt as

predictor of US; honeybees [68].

Sequence learning: For example, learning the sequence of landmarks leading to a food source; bumblebees [21], honeybees [20].

State-dependent learnt valuation: The phenomenon that perceived US strength depends on the internal state of animals, for example on

hunger levels; locusts [151].
scenes, and never bind them together into a coherent image.
It might, however, be very difficult to generate adaptive
behaviour without such binding (compare Balint’s syndrome
in humans), and indeed it has been shown unambiguously
that bees can bind together various pattern features into
an image [78,79].

The cognitive abilities of insects are less surprising if one
considers the neuronal circuitry required to perform them.
Artificial neural network analyses typically show that the
minimum number of neurons necessary to perform a variety
of cognitive tasks is exceedingly small (Figure 5). For
example, a simple visual categorisation task (where patterns
varying along a continuum are categorised by width or
shape) can be solved with a network consisting of seven
sensory neurons and five interneurons [80], and selective
attention could be generated with nine sensory neurons
and fewer than a dozen interneurons [81], plus motor
neurons. In another set of networks loosely based on
circuitry in insect mushroom bodies, it was shown that
landmark learning, and indeed the active searching for novel
spatial solutions, can be generated with very limited neuron
numbers [82,83].

Basic numerical abilities (as found in bees [74]) have been
simulated using a network of 50 visual input units (the
‘retina’), 450 neuron clusters generating a topographical
map of object locations (normalising for location and size),
and a set of 15 numerosity detectors that sum up the outputs
from the location map [84]. Note that the units in this network
are neuronal clusters, not individual neurons, but there is no
a priori reason why such a network should not work with
single neurons instead. Similarly simple networks can be
used for sequence learning [85], as used, for example, in
landmark navigation by bees [20,26], and path integration
[86]. It is interesting to note that even more complex pro-
cesses, such as route planning and anticipating the conse-
quences of one’s own actions, at least at their most basic
level, require neuron numbers that could still be accommo-
dated in the insect nervous system [83,87].
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Are these artificial neuronal networks realistic, and likely to
be similar to those really implemented in insect brains? In
some cases, the answer might turn out to be ‘no’, but the
important point is that some cognitive feats demonstrated
in insects can, at least in principle, be solved with neuronal
networks consisting of dozens or hundreds, not millions, of
neurons. Insect brains, under stringent selective pressure
to accommodate maximum computational power into mini-
mal space, for many millions of generations, will certainly
have had the possibility to arrive at solutions that are equally
efficient as those discovered by neural network modellers. In
the future, a better integration of the literature on minimal
wiring solutions [48,88–90] and neural networks [80,81,83]
with neurobiological work on learning and memory in insects
[7,91] is desirable.

Menzel and Giurfa [7] have largely identified the neural
circuitry involved in olfactory classical conditioning in honey-
bees, and have made the convincing argument that more
cognitive forms of information processing could be achieved
through modular organisation and lateral connections
between modules, for example in the contextual learning of
odours and visual stimuli [92]. As yet, we do not understand
the full circuitry behind many cognitive abilities in animals,
but it is clear that this is the desideratum, rather than the
measurement of correlations between brain size and cogni-
tive ability.

Neural Consequences of Changing Brain Volumes
Comparison of closely related species shows that the abso-
lute brain volume of both vertebrates and insects increases
with body mass [10,93], although the relative brain volume
decreases. Increases in total brain volume may be due to
concerted changes throughout the brain or may be restricted
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Figure 4. Rule learning and the concept of
sameness and difference in an insect, the
honeybee.

Top row: Sameness rule learning: bees were
trained in a delayed matching-to-sample para-
digm, where they were first shown a sample of
a visual stimulus (for example, yellow) when
entering a Y-maze type setup. At the decision
point, they were presented two stimuli (for
example, yellow and blue), only one of which
matched the one previously seen, and which
marked the entrance to a chamber with
a sucrose reward. After training, bees will not
only be able to reliably pick the same stimulus
as seen earlier, but will learn a rule to ‘always
pick the same one’, no matter what the stimulus
actually is, i.e. no matter whether it is yellow,
blue, vertically striped, or horizontally striped.
Bottom row: Difference rule learning (delayed
non-matching-to-sample): in the same appa-
ratus, bees can also learn to ‘always pick the
different one’, so that they have to remember
the sample stimulus, and then choose the stim-
ulus that differs from it. Bees can even transfer
these learnt rules from one sensory modality to
another, for example from olfaction to vision.
Redrawn from [27].

to specific brain regions that expand rela-
tively to the rest of the brain, in corre-
spondence with ecological specialisa-
tion [41,94]. As we have discussed for

sense organs, expansion cannot be entirely restricted to
a specific region of the nervous system because information
must be conveyed to and processed by neighbouring regions
if the expansion is to affect behaviour [41].

As brain regions increase in size, so the distance that
information must travel between regions increases. In verte-
brates, the delays between regions can be substantial; even
in small brains, delays can reach 100 milliseconds between
hemispheres [95] and may be substantially longer in the
smallest axons of the peripheral nervous system, which
could have profound consequences for vertebrate behav-
iour. An increase in axon diameter increases conduction
velocity, as does myelination [96]. Thus, as brains expand,
so axon diameters and the proportions of myelinated axons
must increase to reduce delays between regions [97].
Folding can reduce the distance between highly intercon-
nected regions of the cortex and long-distance connections
are sparse compared to short-distance connections [10].
Nevertheless, in mammalian cortex the volume of connec-
tions between distant brain regions (white matter) increases
disproportionately faster than that of local processing (grey
matter) [98].

An increase in the size of a brain region would increase the
length of connections among neurons within that region and
to other brain regions. As noted previously, longer connec-
tions increase conduction delays and energetic costs.
Because of constraints on energy consumption and space,
large numbers of long distance connections with high costs
in terms of energy and space would be selected against.
Instead, neurons make large numbers of local connections,
only making relatively few long-distance connections
[10,48]. Such a distribution of connections reduces connec-
tion lengths whilst still facilitating rapid dissemination of



Review
R1003
A

B

P
ro

je
ct

io
n 

ne
ur

on
s

Value 
neuron

Output
neuron

Kenyon
cells

Lobe 
neurons

Projection
neurons

Calyx

Lobe

Lateral horn
interneurons

Value 
neuron

Current Biology

Figure 5. Neural network model reproducing
associative learning in the insect mushroom
bodies.

(A) A simplified network in which the mushroom
body is represented by the single Output
Neuron that learns and later identifies salient
patterns. During exposure to a stimulus
conveyed by Projection Neurons the Value
Neuron indicates the patterns to be learnt and
later recalled. (B) An elaborated model of the
mushroom body and the networks to which it
connects. Input is provided by pairs of projec-
tion neurons that connect to single Kenyon
cells, each of which is a coincidence detector
spiking only in response to synchronised inputs
from both pre-synaptic neurons. Learning of
Kenyon cell activity patterns is instructed by
a value neuron (carrying, for example, the
sucrose reward signal; compare Figure 1);
lobe synapses are strengthened in response
to simultaneous activity in both the Kenyon
cells and value neuron. Adapted from [118],
with permission.

information throughout the brain. This
pattern of connectivity promotes the
proliferation of brain regions as brains
increase in size, brain regions segre-
gating to maintain a high level of local
connectivity and reduce the number of
long-distance connections. Novel brain
regions and the circuits within them
may be free to diversify, producing
novel behaviours.

Insects lack myelin, though it is
present in other arthropods [96], and
increased conduction velocity is
achieved solely through increased axon
diameters. The largest axon diameters
are achieved in interneurons with long
range connections that form part of
escape circuitry [60]. Although these
interneurons will increase the volume of
the ventral nerve cord, there are typically
very few such neurons. For example, the desert locust,
Schistocerca gregaria, has just four pairs of giant interneu-
rons that transmit signals from cercal hairs for the initiation
of an escape response. The fastest of these neurons have
axon diameters of approximately 25 mm and conduction
velocities of 3.9 m s21 [60]. Thus, the small distances within
insect nervous systems allow the majority of information to
be transferred in interneurons with small axon diameters.
Indeed, distances are sufficiently small within insect nervous
systems that some interneuron populations transmit purely
analogue signals, improving the efficiency of information
processing further [41,99]. Transmission of analogue signals
is restricted, due to their propagation and accumulation of
noise, to short distances. Thus, within vertebrate nervous
systems they are restricted to short sensory receptors and
some visual interneurons [100].

Brain Size and Long-Term Memory Storage Capacity
There is no question that some vertebrates can store
extremely large quantities of memories, with which insects

presumably cannot compete. In a study famously entitled
‘‘Learning 10,000 Pictures’’, Standing [101] concluded that
human’s memory for pictures is virtually without limits. But
it doesn’t require a brain that weighs more than 1 kg to store
large quantities of information. Pigeons can remember about
800 images with substantially smaller brains, but the record
among birds is held by Clark’s nutcracker, which is thought
to remember the locations of several thousand seed caching
places [18]. Within the food-storing birds like Clark’s
nutcracker, there is evidence that storage capacity increases
with hippocampus size [102,103].

There have been some attempts at determining memory
storage capacity in social insects [104,105]. Typically, tests
on insect memory capacity have come up with numbers in
the single digits for any given set of items to be memorised,
although it is quite possible that these are underestimates.
The number of landmarks that can be stored by a honeybee
is at least six, and bees can link these to specific routes that
guide them to various food sources [106]. Honeybees form
long-term memories of rewards to be expected at four
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Figure 6. The acquisition of novel pathways can
produce novel behaviours.

(A) In basal insects the mushroom body calyces
receive olfactory inputs (red). Parallel fibres
receive inputs (purple) and make outputs
(black). (B) In some insects (such as dragonflies)
the olfactory inputs to the calyces have been re-
placed by inputs from the visual system (blue).
(C) In hymenopterans (bees, wasps and ants)
the calyces receive inputs from both olfactory
(red) and visual (blue) inputs. (Adapted from
[128] with permission from John Wiley & Sons,
Inc.)
individual artificial flowers, but an upper limit has not yet
been found [19]. Some (but not all) individual bumblebees
(Bombus terrestris) can distinguish four rewarded stimuli
from four unrewarded ones [104]. Bees can also link specific
spatial (feeding site) memories to smells, but appear to be
unable to form more than two such associations unless the
feeders are further specified by distinct colours, in which
case they can juggle three spatial position-smell-colour
associations [92], albeit with less accuracy.

This appears to be a common theme: while insects appear
to retain multiple associations in long-term memory, accu-
racy and task speed deteriorate as more information needs
to be handled [107,108]. While tests of vertebrate and insect
long-term memory storage capacity are not directly compa-
rable, this capacity is probably lower in insects than in many
large-brained vertebrates. It is also possible that there is
more ‘adaptive redundancy’ in larger-brained animals, in
that memories are written into multiple circuits to protect
against interference or injury.

Likewise, there might be differences in working memory
capacity and the amount of incoming information that can
be processed in parallel by insects and some vertebrates
[70]. Again, an increase of neural tissue here does not, by
default, produce more types of neuronal operations or
more advanced computations, just more storage capacity.
However, searching a bigger library of stored information
might enable an animal to generate more and better novel
solutions to a problem, or find such solutions with higher
probability.

Brain Size and Neural Information Processing
Changes in the sensory periphery alter the information
extracted from the environment but changes in central
regions can provide more processing power, allowing novel
associations and computations. In addition to differences in
the quantity of information that can be extracted, processed
and stored by animals with different brain sizes, there is no
question that there can also be differences in quality. For
example, bees fail to solve transitive inference tasks [109]
and it is unlikely that in the insects we will find instances of
flexible tool use, insight learning, theory of mind, etc. None-
theless, the remarkable work on cognition in corvids [110]
shows that a brain that weighs about 10 g [18] can achieve
many of the types of cognitive operation that great apes
can, whose brains have a mass of several hundred grams
[6]. This raises the question of whether absolute brain size
plays any role at all in cognitive capacity — because both
corvids and chimpanzees have similarly larger brains than
expected for their body mass [110], they might have similar
potential for intelligence [18]. The additional total brain
volume found in primates might, to some extent, go towards
processes unrelated to behavioural repertoire or cognitive
capacity, such as we have described above.

Should we expect that an insect whose brain mass is simi-
larly elevated above the regression line between body size
and brain size as corvids or apes will be on a par with them
in terms of cognitive capacity? Would we expect selection
to produce any degree of cognitive capacity, entirely based
on ecological demands, and independently of brain size?
Probably not — one obvious reason is that neural circuitry
cannot be infinitely miniaturised [111] and it is the actual
circuitry required for any single task that is of more interest
than the size of the tissue that contains the circuits. Artificial
neural networks might provide working hypotheses as to the
minimal neural substrate required for the types of higher
cognitive functions found in birds but not insects, and
whether some might indeed be too complex to be accommo-
dated within the constraints of an insect head capsule.

In terms of absolute computational power, relative brain
size provides little information. The number of computations
within a given time that can be supported by neural tissue is
dependent upon absolute brain size, the number and size of
neurons, the number of connections among them and the
metabolic rate of the tissue. The upper rate of action poten-
tials that can be sustained is determined by the specific
metabolic rate, which will be higher in smaller brains. Smaller
brains can therefore maintain a higher density of computa-
tions. Thus, relatively large brains from animals with small
body mass are likely to have higher specific metabolic
rates than similar sized brains from larger animals. Hence,
although the absolute numbers of neurons and connections
primarily determine the computational power, the energy
available for neural processing, which is affected by the
specific metabolic rate, is also important.

When relating the size of a brain area to lifestyle and cogni-
tion, it is interesting to evaluate centres that are further away
from the sensory periphery and known to be engaged in
learning, such as the insect mushroom bodies [7,91].
Increases in the volume of central brain regions can occur
through the replication of nearly identical circuits — most
likely engaged in more parallel processing but not neces-
sarily more types of neuronal computation — and the addi-
tion of entirely new circuitry, which may be most promising
when searching for advances in cognitive ability (Figure 6).
For example, the most basal extant insects, the Archaeogna-
tha, have antennal lobes but lack mushroom bodies, which
are important for discrimination of odours as well as learn-
ing and memory [35]. The mushroom bodies, like the
mammalian cortex, are compartmentalised into distinct
clusters (‘modules’) of Kenyon cells, and insects with larger
mushroom bodies have more such subcompartments [112].
Intriguingly, scarab beetles that are generalist feeders not
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only have larger mushroom bodies with more sub-compart-
ments than more specialised species, but there is also a
suggestion of differences in innervation patterns of the
mushroom bodies depending on feeding ecology: general-
ists, but not specialists, might receive direct input from
the optical lobes (not just chemosensory inputs as in most
insects), possibly facilitating the kind of cross-modal
cognitive operations that Srinivasan [73] has described for
honeybees, and for which, at least in flies, the mushroom
bodies are essential [91]. Such cross-connections between
specialised modules are often critical for the acquisition of
novel cognitive functions: for example, in humans there are
direct projections from the neocortex to the major vocal
motor neuron groups, which are either absent or weaker in
non-human primates [113].

Returning to our comparison of the insect and vertebrate
visual systems, it is clear that vertebrate visual systems
contain greater numbers of distinct central visual areas spe-
cialised for a variety of tasks. For example, the vertebrate
dorsal and ventral visual pathways contain numerous brain
areas containing highly specific receptive fields and are
involved in parallel and serial processing of visual informa-
tion. Although neurons in insect visual systems possess
receptive fields similar to those found in mammalian V1, no
equivalents of the receptive fields found in higher visual
centres, such as those in the dorsal and ventral visual path-
ways, are known in insects. These pathways involve
numerous additional serial processing stages that allow the
computation of novel receptive fields, for example neurons
in the human ventral visual pathway that respond to indi-
vidual faces [114].

Serial and parallel processing are essential for computing
novel receptive fields and generating computational maps.
Parallel neural pathways allow sensory inputs to be pro-
cessed in different ways to extract information. Such pro-
cessing can allow the computation of variables not directly
represented in sensory inputs, such as the computational
map of auditory space in the midbrain of barn owls [115].
Within large brains, additional parallel processing pathways
and stages of serial processing allowing the computation of
novel receptive fields may be added more easily than in
insect brains where space may impose more severe con-
straints. Insect brains also contain neurons that respond to
variables that must be computed from sensory inputs,
such as interneurons in the anterior optic tubercle of locusts
that encode the solar azimuth by combining information
about the polarization pattern of the sky with spectral and
intensity gradients [116]. However, in insects, neurons repre-
senting variables computed by combining multiple sources
of sensory information appear to be present in smaller
numbers than in vertebrates.

In honeybees, foraging experience induces an expansion
of the mushroom bodies beyond the growth that would
otherwise occur without foraging experience [117]. As there
is no adult neurogenesis in bees, this increase is caused
by enhanced dendritic outgrowth and branching of the
w170,000 Kenyon cells in each mushroom body [117]. Asso-
ciative learning in the mushroom bodies can be realistically
modelled with networks comprising only a few hundred
neurons [118] (Figure 5) — a tiny fraction of those actually
present that could not easily explain the volume changes
that are actually observed. In some insects, additional cogni-
tive functions, such as context learning and generalisation,
also occur in the mushroom bodies [91,119]. While the
volume changes in mushroom bodies with experience are
intriguing, there is little information on the functional conse-
quences of these changes. Although there is an attraction to
‘small’ nervous systems with ‘simple’ processing, a structure
containing 170,000 neurons presents a formidable challenge
to any comprehensive understanding of internal function
even with multielectrode recording techniques.

In recent years, several studies on vertebrates have found
a correlation between brain size and some form of learning
flexibility, including the generation of novel ‘innovative’
responses to environmental challenges [13,120]. Again, the
neural circuitry involved in such innovation, and whether
insect brains are prohibitively small to contain such circuitry
is unclear. Whether insects can compute novel solutions to
spatial problems based on previously learnt information
(acquired in separate learning trials) is controversial [23];
again, however, it is interesting to point out that neural
network analyses indicate that the generation of such
novel solutions is neither computationally demanding nor
does it require large neuron numbers [83]. Can insects
‘invent’ new behaviour patterns? There has been no system-
atic study — obviously the observation of novel behaviours
requires confronting the subjects with unconventional chal-
lenges. In one paper entitled ‘‘Can a fly ride a bicycle?’’
[121], fruit flies were reported to solve motor problems that
no insect had ever encountered in evolutionary history
before.

In another experiment, all foraging bumblebees returning
from a foraging bout were caught in black film canisters to
weigh them [122]. All bees initially tried to avoid capture;
their natural response is phototaxis and escape from dark
places when threatened. Some bees reacted with overt
aggression. Eventually, however, some individuals learnt to
land voluntarily in the canisters, effectively using them as
a means of transportation into the hive – occasionally, even
if canisters were held in the air several meters away from
the nest by the experimenter. One might counter that this
reflects simple associative learning of the appearance of
the container with being released into the nest — but it is
not trivial, firstly because there was often a substantial delay
between capture and release, and secondly because this
behaviour required the complete suppression of the instinc-
tive escape responses that normally operate during capture.
In a sense, therefore, the observed behaviour is no different
from the reports of pigeons cleverly using London Under-
ground trains [18]. Because larger brains can extract and
store more (and more detailed) information, having larger
memory storage facilitates the generation of novel solutions
based on previously stored information. In addition, neuronal
connections between modules (brain areas) that process
and store different items and types of information will enable
the generation of new behavioural solutions with higher
probability.

Conclusions
The search for correlations between overall brain sizes,
cognition and aspects of animals’ natural history is riddled
with complications [12], and our knowledge of insects’ often
impressive behavioural repertoire size and cognitive ability
adds to these difficulties. A high proportion of differences in
brain volume, especially between species of different sizes,
will be related to the fact that these animals support larger
sense organs and their need to move larger bodies [10].
Bigger sense organs necessitate larger amounts of neural
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tissue to evaluate the information, providing more sensitivity
and detail, but not necessarily higher ‘intelligence’.

It is now clear that miniature brains can achieve many more
types of cognitive operation than was assumed 15 years ago,
but perhaps we should move away from just marvelling at the
‘intelligence’ that can be generated by smaller-than-human
brains, despite the public interest garnered by such findings.
Given that artificial neural networks required for many
complex cognitive tasks require relatively few neurons, we
might instead be surprised that many animals have such
big brains. There might be relatively little mileage, for
example, to hunt for intraspecific correlations between brain
size and associative learning ability in insects (or larger
animals), when even the smallest nervous systems, such as
that of the nematode Caenorhabditis elegans with its 302
neurons, are capable of associative learning [123]. Even if
such correlations should be statistically significant, they
are likely epiphenomena of other processes, for example
differences in sensory performance. Despite the obvious
ability of larger animals to transport and feed larger brains,
they should be under selective pressure to minimise expen-
sive neural tissue that isn’t needed. It is thus clear that we
need to understand the neural circuitry behind a given cogni-
tive ability better, and in the absence of neurobiological tools
to monitor extensive circuits’ activity with sufficient temporal
resolution, artificial neural network analyses should be help-
ful to formalise what’s minimally needed.

Almost all of the molecular components of neurons —
ion channels, neurotransmitters, pumps, exchangers and
G-protein receptors — are present in both vertebrates and
insects, and thus, presumably in their common ancestor.
Moreover, connections between neurons show similar plas-
ticity to those found in vertebrates, including short-term,
spike-timing-dependent and long-term plasticity [124,125].
Neural circuits perform similar computations in insects,
including lateral inhibition, feedforward and feedback excita-
tion/inhibition and presynaptic inhibition [60,126,127].

Thus, rather than an explanation based on the evolution
of a novel molecular component or greater numbers of
neurons, we argue that new neurons recruited into novel
pathways and novel brain regions resulting in greater serial
and parallel processing of information and links between
processing pathways are more likely to contribute more to
qualitative changes in behavioural performance. To the
extent that developing nervous systems are pre-pro-
grammed to extract regularities from the environment by
self-organisation, basic forms of cognition will ‘pop out’
even of relatively small neuronal circuits. Ultimately, we will
understand brain evolution better if we appreciate that
cognitive performance can arise early on and in small
nervous systems, or relatively easily by convergence based
on environmental challenges, using the same self-organising
principles. Larger brains in animals with larger carrying
capacity facilitate, but do not necessarily automatically
generate, the segregation, conversion and addition of more
(and more specialised) modules that might ultimately be
used for novel cognitive functions.
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Verständliche Wissenschaft, Volume 7 (Berlin-Goettingen-Heidelberg:
Springer-Verlag).
137. Seeley, T.D. (1985). Honeybee Ecology (Princeton, New Jersey: Princeton
University Press).

138. Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahrbach, S.E., Farris, S.M.,
Reynolds, D.R., Edwards, A.S., Martin, A., Robinson, G.E., Poppy, G.M.,
et al. (2000). Ontogeny of orientation flight in the honeybee revealed by
harmonic radar. Nature 403, 537–540.

139. Seeley, T.D., and Tautz, J. (2001). Worker piping in honey bee swarms and
its role in preparing for liftoff. J. Comp. Physiol. A 187, 667–676.

140. Schultz, K.M., Passino, K.M., and Seeley, T.D. (2008). The mechanism of
flight guidance in honeybee swarms: subtle guides or streaker bees?
J. Exp. Biol. 211, 3287–3295.

141. Biesmeijer, J.C. (2003). The occurrence and context of tremble dancing
in free-foraging honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 53,
411–416.

142. Lehrer, M. (1993). Why do bees turn back and look? J. Comp. Physiol. A 172,
549–563.

143. Gumbert, A. (2000). Color choices by bumble bees (Bombus terrestris):
innate preferences and generalization after learning. Behav. Ecol. Socio-
biol. 48, 36–43.

144. Franks, N.R., Hooper, J.W., Dornhaus, A., Aukett, P.J., Hayward, A.L., and
Berghoff, S.M. (2007). Reconnaissance and latent learning in ants. Proc.
Roy. Soc. B 274, 1505–1509.

145. Lewis, A.C. (1986). Memory constraints and flower choice in Pieris rapae.
Science 232, 863–865.

146. Carazo, P., Font, E., Forteza-Behrendt, E., and Desfilis, E. (2009). Quantity
discrimination in Tenebrio molitor: evidence of numerosity discrimination
in an invertebrate? Anim. Cogn. 12, 463–470.

147. Yarali, A., Niewalda, T., Chen, Y.C., Tanimoto, H., Duerrnagel, S., and
Gerber, B. (2008). ‘Pain relief’ learning in fruit flies. Anim. Behav. 76,
1173–1185.

148. Lynn, S.K., Cnaani, J., and Papaj, D.R. (2005). Peak shift discrimination
learning as a mechanism of signal evolution. Evolution 59, 1300–1305.

149. Wright, G.A., Choudhary, A.F., and Bentley, M.A. (2009). Reward quality
influences the development of learned olfactory biases in honeybees.
Proc. R. Soc. B 276, 2597–2604.

150. Longo, N. (1964). Probability-learning and habit-reversal in the cockroach.
Am. J. Psychol. 77, 29–41.

151. Pompilio, L., Kacelnik, A., and Behmer, S.T. (2006). State-dependent
learned valuation drives choice in an invertebrate. Science 311, 1613–1615.


	Are Bigger Brains Better?
	Introduction
	Brain Size and Sensory Systems
	Behavioural Repertoires and Scaling in the Motor System
	Cognition with Miniature Brains
	Neural Consequences of Changing Brain Volumes
	Brain Size and Long-Term Memory Storage Capacity
	Brain Size and Neural Information Processing
	Conclusions
	Acknowledgments
	References


