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Animal Cognition: An Insect’s
Sense of Time?

For Immanuel Kant, time was the very form of the inner sense, the
bedrock of our consciousness and also the origin of arithmetic ability.
New research on bumblebees has shown that even an invertebrate with
a brain the size of a pinhead can actively sense the passage of elapsed
time, allowing it to predict when certain salient events will occur in the
future.
Peter Skorupski and Lars Chittka

It has long been known that bees
have circadian rhythms that allow
them to estimate the time of day
[1,2]. This helps them to use a sun
compass to determine correctly
the direction of home or a feeder
[2]; they can also learn to schedule
their visits to food sources to
certain times of day [3]. But can
bees also measure shorter, flexible
intervals that are not directly driven
by an endogenous biological
oscillator such as their circadian
clock (Figure 1) [4]? The
assumption that insects can
measure time — or its reciprocal,
rate — is implicit in the literature on
foraging, where there is evidence
that bees might measure flower
profitability by assessing nectar
gained per unit time [5], and cost in
terms of floral handling time [6].
An ability to measure time is
implied in the literature on insect
flight speed and distance
measurement [7,8]. And to
understand their dance language,
honeybees need to be able to
attend to the times of the various
moves [2]. The measurement of
time or rate is implicit in all of these
studies.
Nevertheless, a basic question
about the neural representation of
time arises: is it emergent in the
activity of any neural circuit that
subserves processing with
a temporal dimension, or is it
necessary to posit a special
cognitive representation of time
[9]? The ability to attend to the
passage of time is termed interval
timing, which has been
demonstrated in a range of
vertebrate species [10,11]. This
shows that time can be represented
explicitly in non-human
animals — in estimating, and then
waiting for, a fixed time interval, an
animal is, in effect, attending to the
future, and at the same time,
referring to a memory from the
past. But despite the many studies
predicated on the assumption
that insects can measure time or
some correlate of time, empirical
evidence that time itself can be
measured by insects was, until
now, lacking.

As reported recently in Current
Biology, Boisvert and Sherry [12]
used a standard fixed interval
procedure from the vertebrate
literature to probe the interval
timing capacity of bumblebees.
The behaviour was first shaped by
training a bee to obtain a sugar
reward by inserting its proboscis
through a small hole in the wall of
an experimental chamber.
Proboscis extension interrupted
a fine infra-red beam, which
triggered delivery of sucrose
reward. For the experimental
sessions, the apparatus was
programmed so that the reward
would only be delivered after
a fixed time interval had elapsed
(Figure 2). The onset of this interval
was cued by illumination of the
experimental chamber. A response
by the bee — proboscis
Figure 1. Can bumblebees
sense the passage of time?

It has been long known that
bees can correctly estimate
the time of day by relying
on their circadian clocks.
As discussed in the text,
a new article by Boisvert
and Sherry [12] shows that
bumblebees can also mea-
sure the duration of short
intervals, potentially allow-
ing them to predict the refill
schedules of nectar-yield-
ing flowers.
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6, 12, 24 or 36 s
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Figure 2. Diagram of the
fixed-interval procedure used
by Boisvert and Sherry [12].

Once a bee was in the exper-
imental chamber and had
consumed an initial reward
by extending its proboscis
through a hole in the wall,
the interval timer was
switched on (FI, upward de-
flection) and illumination of
the chamber (light) served
to indicate that timing was
to begin. Any proboscis ex-
tensions (response) made
by the bee during the timed
interval had no effect, but
the first response following
the end of the interval trig-
gered delivery of a sucrose

reward and also switched off the light. After a delay of 4 seconds to allow reward con-
sumption, the next trial in the session was initiated by switching the light and interval
timer on again. A session consisted of 20 trials. Different experimental groups received
either long and short intervals in separate sessions, or long and short intervals (for exam-
ple 12 and 36 seconds) randomly intermixed , to test the bees’ concurrent timing ability.
extension — during this fixed
interval has no effect, but the first
response after the time interval has
elapsed triggers sucrose reward
(Figure 2). When rats and pigeons
are trained with similar procedures,
the animal soon learns about the
time delay involved, and then
typically withholds its response for
the first part of the fixed interval.
Boisvert and Sherry [12] found that
bumblebees behave in a similar
manner. When trained on fixed
intervals of either 12 or 24 seconds,
responses were delayed
appropriately. The delay from the
beginning of the timed interval to
the first response — the wait
time — was significantly longer for
the 24 second than for the 12
second intervals. In both cases,
however, mean wait times
accounted for about a third of the
interval duration, and the maximal
rate of response occurred at or
near the end of the time interval.
The bees, therefore, can predict
the anticipated end of the interval
and delay their responses
accordingly.

In a second experiment,
Boisvert and Sherry [12] probed the
bees’ ability to time different
intervals concurrently, by mixing
fixed intervals of either short or
long duration. What would
happen when long and short
intervals were randomly mixed, so
that the bees could not anticipate
whether the current interval was to
be long or short? Would the bees
learn and attempt to track the
durations of both intervals? One
would expect an initial response
in anticipation of the end of the
short interval, followed by a later
response in anticipation of the end
of the long interval (on those trials
in which the short interval expired
with no reward). The bees did
indeed behave as if they were
initially timing the shorter interval,
although the overall rate of
response did not show two
clearly distinguishable peaks.
Nevertheless, detailed examination
of within-trial response patterns
were suggestive of concurrent
timing: during long interval trials,
responses tended to occur in
bursts, with an early burst centred
near the end of the short interval,
followed significantly later by
a second burst anticipating the end
of the long interval.

Unequivocal evidence that bees
can concurrently time multiple
intervals would require
demonstrating that response
onset and offset bracket the
anticipated end times of both the
short and the long intervals. This
could be done by omitting the
sugar reward, but will require
many more experiments, as it
means interspersing occasional
unreinforced trials among
many more reinforced ones.
Nevertheless, it seems clear that
Boisvert and Sherry’s [12] bees are
predicting the future, in so far as
their behaviour suggests an
expectation tuned to the lapse of
different time intervals; timing, by
definition, is attending to the future.

Time, in vertebrates, can partly
be described as a mental
magnitude that obeys Weber’s law
[13] — that is, like a perception
mediated by the conventional
senses. According to Weber’s law
the precision of a sensory quality
scales with the magnitude: for
example, you could distinguish
a 10 gram weight from one of
20 grams, or 1000 grams from
2000 grams, but probably not
1000 grams from 1020 grams.
Similarly, if an organism can time
(say) a 6 second interval with
62 seconds accuracy, then its
accuracy on a 60 second interval
will likely be 620 seconds [13].
Further work is required before this
can be confirmed for insects.
Interestingly — though perhaps not
surprisingly, considering the
reciprocal of time is rate, or events
over time — number (strictly
speaking, countable quantity) also
appears to be represented as
a scalar variable according to
Weber’s law in vertebrates [14].
Rate is quantity over time, and
quantity may be countable or
non-countable. Given this, and
given also the demonstrated
cognitive capacities of bees [15],
one might ask if they also have the
cognitive ability to attend to
countable quantity in time, as well
as non-countable scalar duration.

In fact there is already some
evidence that estimation of
distance travelled by bees and ants
can be modulated in a predictable
way by countable quantity [16,17].
If it is implicit, say from considering
optimal foraging, that an organism
can represent time, then it seems to
be equally so that it can represent
quantity, and specifically,
countable quantity or numerosity.
Stomach distension in bees, for
example, is a non-countable
quantity, but the quantity of flowers
visited is countable. The two
together provide useful information
concerning flower profitability.
Velocity, again, is distance over
time, and distance is formally
non-countable. But if you are
gazing out of the passenger
window, your sensation of speed
is not based on distance in this
formal sense, it is based on
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something countable, such as
trees flashing past. Even if you are
not actually counting, you are still
having a sensation of countable
quantity. Perhaps this is how
numerosity is measured in animals.
In a range of vertebrate species,
the representation of time and
numerosity seem to share common
principles [14,18], as Kant posited;
Boisvert and Sherry’s [12] elegant
demonstration of a timing sense
in bees opens the way for
further investigation of these
fundamental questions in
invertebrates.
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kinase cascade [4]. The two MAP
kinases in this pathway, Kss1
and Fus3, then phosphorylate
transcription factors, cell-cycle
regulators, and other targets that
coordinate mating.

Ga proteins were first discovered
in mammalian cells as
‘transducers’ that propagated
signals from hormone receptors to
second-messenger producers like
adenylate cyclase [5]. For many
years it was thought that Gbg did
nothing but bury the business end
of Ga so that Ga could not signal
until it scored some GTP and
disengaged. Studies of the yeast
mating pathway helped turn that
dogma on its head, however, when
genetic and (eventually) molecular
studies showed that Gbg

transmitted the mating signal to
downstream effectors like the Ste5
scaffold protein and the Ste20
protein kinase. As the evidence
favoring a signaling role for yeast
Gbg mounted, most workers
presumed that Ga did nothing
more to transmit the signal than
release Gbg (and perhaps activate
a desensitization pathway [6]). Now
the dogma is chasing its tail, as the
new work indicates a positive
signaling role for yeast Ga as well.
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